RECENT ADVANCES IN SURGERY
CONTRIBUTORS

T HOLMIS SELLOWS, D M V Ch M A (Oxon) I R C S
Thoracic Surgeon Middlesex Hospital London Surgeon London Chest Hospital and Harfield Hospital

NORMAN C TANNIR, I R C S
Senior Surgeon St James's Hospital London, Assistant Surgeon Charing Cross Hospital

DILLWYN TAYLOR M A M Ch I R C S
Surgeon King's College Hospital and Belgrave Hospital for Children Surgeon and Lecturer in Surgery Postgraduate Medical School of London

R MILNES WALKER, M S I R C S
Professor of Surgery University of Bristol Consultant Surgeon United Bristol Hospitals

A B WALLACE M B Ch B I R C S (Ed) M Sc (McGill)
Reader in Plastic Surgery Edinburgh University Plastic Surgeon Bangour Hospital and Royal Hospital for Sick Children Edinburgh

A W WILKINSON Ch M F R C S (Ed)
Lecturer in Surgery University of Edinburgh Assistant Surgeon, Deaconess Hospital Edinburgh
RECENT ADVANCES IN SURGERY

Edited by
HAROLD C. EDWARDS
M.D. M.R.C.S.

With a Foreword by
Maj.-Gen. SIR HENRY ORR, O.B.E., M.C.

FOURTH EDITION

WITH 17 ILLUSTRATIONS

LONDON
J. & A. CHURCHILL LTD
104 GLOUCESTER PLACE, W.1
1954
This book is copyright. It may not be reproduced by any means in whole or in part without permission. Application with regard to copyright should be addressed to the publishers.
First Edition 1928
Second 1929
Spanish Translation 1930
Third Edition 1948
Reprinted 1949
Fourth Edition 1944

This book is copyright. It may not be reproduced by any means, in whole or in part without permission. Application with regard to copyright should be addressed to the Publishers.
in the fall and the rest of the year that they are present. When the play goes on below them. But when there is the act of the judgment, he cannot possibly change it to the same reasons as it is now, and they must necessarily put the case of the extent to which the case corresponds with the wise.

To write of recent advances is impossible. The field of thought is so vast that it is a task of the greatest difficulty. There are the usual 200 monthly or quarterly journals, and about a quarter of a million of the journals to be read. Two topics that attempt to summarize the news of the past year in all the fields. In addition some 400 or 500 separate textbooks must be purchased. These are at my side twelve and four attempts that attempt to summarize the news of the past year.

Another difficulty that confronts the writer on cancer surgery is the revaluation of work that seemed at the time of its introduction to be sound and successful. For example, the number of operations for cancer of the breast is now only a fraction of the number of cases treated. The last five years have seen many such reassessments. Pancreatectomy-evisceration has been to be reasonable safe, but its late results have already disapproved. The amputating procedures that more simple and less effective are now preferred for the treatment of cancer. Amputation in the head Operations for prolapse of the intervertebral disc have not lived up to early expectation, and though the addition of traction by intervertebral bone blocks may give better results as present. The cases are subjected to exploration till belted and physiotherapy have now been given a prolonged trial. The surgery of hypertension has fallen even more rapidly into disfavour and operations on the sympathetic chain are now seldom performed except as a palliative for failure, vision, and intractable headaches.

I have said enough to indicate the difficulty in deciding what are recent advances in surgery. My attempt to answer the question in 1928 was received kindly, and a second edition was called for so quickly that it involved no more work than a general revision of the chapters and the addition of two fresh ones on cancer and radium therapy. When I came to write a third edition I found that I had become more critical both of the writings of others and of my own. I had to read far more widely to form an opinion and I had less time to read. I worked hard but by the time
FOREWORD

The definition of surgery is even more difficult. Surgery is the treatment of diseases or injuries by manual processes, and its greatest advance took place after Lister had showed the way to combat infection and allowed surgeons for the first time to repair remould and transplant as well as to incise and excise and to carry their enterprise into all regions of the body. For thirty years they explored and invented. But the advances in operative surgery were almost complete thirty years ago and further development has been in the nature of detailed improvement except for the growth of certain special branches which has been made possible by discoveries in fields other than those of operative method. Surgical technique has improved no whit in the last quarter of a century. It is true that in the first two decades of the twentieth century good technicians were as uncommon as bad ones are to day but the best operators of 1910 were every bit as skilful as the best of 1930. That the work being done to day is better in every way, the operations being undertaken greater in scope and severity, the operative mortality and the post operative morbidity infinitely less and the functional results of intervention better beyond computing is due to the development over the years of drugs, apparatus and ancillary methods that have made the surgeon's task easier and safer to intravenous medication to improvements in resuscitation, particularly to the perfection of methods of transfusion of storing blood and of preparing blood substitutes to an appreciation of the problems of fluid and electrolyte balance to the use of intestinal decompression to the introduction of electro coagulation and of improved electrical and optical instruments to better materials for fixation ligature and suture to the discovery of the chemotherapeutic and antibiotic drugs to methods of preserving living tissues apart from the body above all to the great developments that have taken place in the science and art of anaesthesia.

To survey this field adequately requires two things: wide knowledge and an independent judgment. Very few surgeons possess both of these attributes and none of them possesses them for very long. They have a wide knowledge at the time when they themselves are preparing for a higher examination and for some time afterwards when they are helping to prepare others but as the years pass by they tend inevitably to confine their study to those aspects of surgery to which circumstances or their talents or interests lead them and their knowledge becomes deeper but less wide. They have an independent judgment when as advanced students they have the understanding to assess without personal bias. They stand
In the preparation and correction of the manuscript, the author is grateful to Mr. J. D. Nott, who has contributed to the plant used in this work. Mr. J. D. Nott, with the skill and attention to detail, has ensured that the text is perfect.

In the preparation of the manuscript, the author is also grateful to Mr. J. D. Nott, who has contributed to the plant used in this work. Mr. J. D. Nott, with the skill and attention to detail, has ensured that the text is perfect.

My thanks are also due to Mrs. E. A. Kemp for her untiring, secretarial work and for the preparation of many of the illustrations.

Acknowledgments are recorded under the appropriate figures to those authors and publishers who furnished illustrations or who permitted their reproduction. I wish to thank them all for their generosity. I should like also to thank my publishers Messrs. J. & A. Churchill Ltd. for their patient and sympathetic cooperation.

Lastly, my grateful thanks go to Sir Harold Gaddie, the original author of 'Recent Advances in Surgery' for writing the foreword
I had finished a chapter it was already due for revision. In eight
ears I finished only four new chapters to my satisfaction and
drew the constant encouragement and inexhaustible patience of
Mr. Wors. I was finally forced to abandon the task and hand over
to my friend, Harold Edwards.

It would be out of place for me to praise the admirable manner
in which Edwards has accomplished his task, but I would say, as
my interest in the book is that of a parent for his firstborn,
I am most grateful to him for the way in which he has brought
it to successful maturity and established it in the fore of
the standard works in surgery and I wish him and his book all
success.

HENNEAGE OGILVIE
CONTENTS

PART I GENERAL

<table>
<thead>
<tr>
<th>Chap</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Water and Electrolyte Balance</td>
<td>H. W. Wilkins</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Antibacterial Therapy</td>
<td>A. C. Cunniff</td>
<td>14</td>
</tr>
<tr>
<td>III</td>
<td>Listeria</td>
<td>T. Cecil Gray</td>
<td>30</td>
</tr>
<tr>
<td>IV</td>
<td>Burns</td>
<td>A. B. Wallace</td>
<td>50</td>
</tr>
</tbody>
</table>

PART II THE ALIMENTARY TRACT

<table>
<thead>
<tr>
<th>Chap</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>The Pharynx</td>
<td>Sir Stanford Cade</td>
<td>62</td>
</tr>
<tr>
<td>VI</td>
<td>The Esophagus</td>
<td>Harold C. Edwards</td>
<td>75</td>
</tr>
<tr>
<td>VII</td>
<td>Diaphragmatic Hernia</td>
<td>Harold C. Edwards</td>
<td>90</td>
</tr>
<tr>
<td>VIII</td>
<td>The Stomach and Duodenum</td>
<td>Harold C. Edwards and Norman C. Tanner</td>
<td>98</td>
</tr>
<tr>
<td>IX</td>
<td>The Gall Bladder and Bile Ducts</td>
<td>Harold C. Edwards</td>
<td>129</td>
</tr>
<tr>
<td>X</td>
<td>The Pancreas</td>
<td>Harold C. Edwards</td>
<td>137</td>
</tr>
<tr>
<td>XI</td>
<td>The Spleen</td>
<td>Harold C. Edwards</td>
<td>150</td>
</tr>
<tr>
<td>XII</td>
<td>Portal Hypertension</td>
<td>R. Milnes Waller</td>
<td>156</td>
</tr>
<tr>
<td>XIII</td>
<td>Crohn’s Disease</td>
<td>Harold C. Edwards</td>
<td>171</td>
</tr>
<tr>
<td>XIV</td>
<td>The Colon</td>
<td>Harold C. Edwards</td>
<td>178</td>
</tr>
<tr>
<td>XV</td>
<td>The Rectum and Anus</td>
<td>E. G. Muir</td>
<td>193</td>
</tr>
<tr>
<td>XVI</td>
<td>Diverticulosis and Diverticulitis of the Intestine</td>
<td>Harold C. Edwards</td>
<td>204</td>
</tr>
</tbody>
</table>

PART III THE THORAX

<table>
<thead>
<tr>
<th>Chap</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVII</td>
<td>The Lungs and Pleura</td>
<td>T. Holmes Sellors</td>
<td>217</td>
</tr>
<tr>
<td>XVIII</td>
<td>The Heart</td>
<td>T. Holmes Sellors</td>
<td>250</td>
</tr>
</tbody>
</table>

PART IV THE GENITO-URINARY SYSTEM

<table>
<thead>
<tr>
<th>Chap</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIX</td>
<td>The Kidney</td>
<td>R. H. O. B. Robinson</td>
<td>293</td>
</tr>
<tr>
<td>XX</td>
<td>The Bladder and Prostate</td>
<td>R. H. O. B. Robinson</td>
<td>303</td>
</tr>
</tbody>
</table>
PART I—GENERAL

CHAPTER I

WATER AND ELECTROLYTE METABOLISM

A W WILKINSON

The General Metabolic Disturbances after Injury

During the last ten years numerous attempts have been made to overcome the catabolism of body tissues especially of protein, which is such a prominent metabolic feature of the first week after operation. These experiments have met with varying degrees of success. However, it is now widely accepted that the post-traumatic catabolic phase of nutrition is part of the normal response to injury by a well-nourished living body, and that this response cannot be much modified by any of the measures which have been tried including the prevention of starvation by maintenance of calorie intake and the provision of an abundant supply of whole or hydrolysed protein. It has also become evident that the protein catabolism is only one aspect of a very complicated but entirely normal reaction which appears to provide the raw materials of the inflammatory response to injury and to infection.

Apart from the circulatory and psychological disturbances the earliest change seems to be the mobilization of water and its associated potassium from uninjured cells. This potassium is excreted in high concentration in the urine and thus probably renders water derived from the cells available for the maintenance of such essential purposes as insensible loss through the skin or in the expired air. This loss of potassium lasts from about six or twelve hours until thirty-six hours or more after injury. After severe injury urinary output is always diminished and may cease entirely for twelve hours or more. When urine formation restarts the daily output is usually reduced for the next week or so. During this time there is reduction also in the quantities of sodium and of chloride which are excreted in the urine each day; these reductions occur regardless of the quantities of sodium and chloride which are ingested or administered. In well nourished subjects the urinary output of nitrogen rises sharply within about twenty-four hours.
CONTENTS

PART V VASCULAR SURGERY

XXI The Peripheral Blood Vessels C G Rob 316

PART VI THE BREAST

XXII Carcinoma H J B Atkins 340

PART VII ENDOCRINE GLANDS

XXIII The Thymus Geoffrey L Keynes 354
XXIV The Thyroid and Parathyroid Selwyn Taylor 362
XXV The Adrenals Selwyn Taylor 375

PART VIII PRINCIPLES OF THE TREATMENT OF MALIGNANT DISEASE

XXVI Radiotherapy Sir Stanford Cade 383
XXVII Hormonal Control Sir Stanford Cade 410
XXVIII Pelvic Viscerectomy Sir Stanford Cade 412

PART IX ISOTOPEs

XXIX Clinical Applications Selwyn Taylor 419

PART X THE NERVOUS SYSTEM

XXX Cerebral Surgery in Mental Illness D W C Northfield 427
XXXI Epilepsy D W C Northfield 445
XXXII Intracranial Aneurysms and Vascular Malformations D W C Northfield 457
able to believe that the extensive metabolic changes and alterations in the distribution of body water and ions may be controlled by adrenal hormones.

The great variation in methods of post operative treatment in different surgical clinics and the similarity of the average results of these many methods indicate that in some respects the patient recovers in spite of the treatment. It is usually only when some body constituent, such as water, sodium, potassium or protein is grossly deficient or when fat is excessive, or when there is disease of important organs, such as the liver or kidneys, that the body is unable to produce the complex endocrinological and metabolic response to injury on which survival depends. Because starvation and the restriction of drinking are so common after severe operations, knowledge of their effect on normal men helps us to understand the effects on surgical patients.

In a temperate climate the daily water requirements can be divided into those for essential extrarenal purposes—insensible loss as vapour by diffusion through the skin and in the expired air—and renal requirements for urine formation. Dubois (1927) estimated that the average insensible water loss was 0.5 gm. water per kilogram body weight per hour or 840 ml. per day for a 70 kg. (11 stone) man. A similar figure was obtained by Gamble (1946–47). This is the primary water requirement which must be satisfied regardless of other needs and abnormal losses. Up to 200 ml. of water per day may be lost in normal faeces but much larger quantities are lost in diarrhoea. The daily volume of the urine depends primarily on the quantity of solutes resulting from metabolism which require excretion by the kidney. This will vary with the nature and quantity of food consumed or the type of starvation and the metabolic state of the patient. The volume of water required to carry away these solutes in turn depends on the concentrating capacity of the individual kidneys. The minimum volume for healthy adults is between 500 and 800 ml. per day. Urine volumes greater than this are usually due to the consumption of water in excess of the minimal requirements. The total daily basal requirement of water is thus about 1,500 ml. It is a common clinical error not to make a daily allowance based on the actual body weight of the patient for insensible water loss. Fortunately this is usually amply compensated by the generous ideas which prevail regarding the average daily volume of urine and thus of the necessary water intake.

When a normal man is deprived of both water and food, about 200 ml. of water are obtained from the oxidation of body fat and protein, but the remaining 1,300 ml. must come from extracellular...
after operation and remains greater than before operation for a period of from five to eight days, this increase in nitrogen excretion does not occur in patients whose body protein content has been greatly reduced by previous undernutrition. After about a week there is usually an increase in the daily urinary volume and a rise in the quantities of sodium and chloride which are excreted; the daily urinary nitrogen excretion falls and there is generally a slow rise in potassium excretion. By about the end of a fortnight after operation all these changes gradually pass off and urinary volume and composition return to normal.

The post-traumatic retention of sodium, chloride and water occurs at a time when the formation of an inflammatory exudate requires the provision of a large volume of extracellular fluid. The normal postoperative renal conservation of sodium and water results in a measurable increase in extracellular fluid volume which lasts for about as long as does the inflammatory reaction. Fox and Baer (1947) showed that in the injured animal sodium and water were transferred from uninjured to injured tissues the sodium content of which rose and potassium content fell. Each shift of cations being accompanied by appropriate quantities of water. Similar large shifts of body fluids are now clinically recognized in thermal burns, in extensive injuries of limbs such as compound fractures and in peritonitis ileus and from intestinal fistulae. The provision of very large volumes of inflammatory exudate from the existing fluids and tissues of the injured individual's own body causes a severe disturbance of internal equilibrium. An inflammatory reaction to injury or irritation is found in most forms of living tissues and is a fundamental requirement for survival. Therefore it is hardly surprising that the means of reducing or modifying the intensity of the reaction has not yet been discovered. However, it is known that previous undernutrition will reduce the output of nitrogen after injury by diminishing the quantity of protein tissue available for catabolism. After operation the prolongation of dietary restriction especially in regard to calories will increase the period during which protein tissue is broken down as will also infection and wound disruption. The renal conservation of sodium and water occurs in spite of an abundant provision of these substances, and may give rise to the retention of large quantities of sodium and water.

Recent work has linked these changes in bodily composition and urinary constituents with the sudden reduction in the number of circulating eosinophils which may be associated with severe surgical injury and with the changes in the urinary output of various end products of adrenal cortical hormone metabolism. It seems reason
able to believe that the extensive metabolic changes and alterations in the distribution of body water and ions may be controlled by adrenal hormones.

The great variation in methods of post operative treatment in different surgical clinics and the similarity of the average results of these many methods indicate that in some respects the patient recovers in spite of the treatment. It is usually only when some body constituent, such as water, sodium, potassium or protein is grossly deficient, or when fat is excessive, or when there is disease of important organs such as the liver or kidneys that the body is unable to produce the complex endocrinological and metabolic response to injury on which survival depends. Because starvation and the restriction of drinking are so common after severe operations knowledge of their effect on normal men helps us to understand the effects on surgical patients.

In a temperate climate the daily water requirements can be divided into those for essential extrarenal purposes—insensible loss as vapour by diffusion through the skin and in the expired air—and renal requirements for urine formation. Dubois (1927) estimated that the average insensible water loss was 0.5 gm water per kilogram body weight per hour or 840 ml per day for a 70 kg (11 stone) man. A similar figure was obtained by Gamble (1946-47). This is the primary water requirement which must be satisfied regardless of other needs and abnormal losses. Up to 200 ml of water per day may be lost in normal faeces but much larger quantities are lost in diarrhoea. The daily volume of the urine depends primarily on the quantity of solutes resulting from metabolism which require excretion by the kidneys. This will vary with the nature and quantity of food consumed or the type of starvation and the metabolic state of the patient. The volume of water required to carry away these solutes in turn depends on the concentrating capacity of the individual kidneys. The minimum volume for healthy adults is between 500 and 800 ml per day. Urine volumes greater than this are usually due to the consumption of water in excess of the minimal requirements. The total daily basal requirement of water is thus about 1.500 ml. It is a common clinical error not to make a daily allowance based on the actual body weight of the patient for insensible water loss. Fortunately this is usually amply compensated by the generous ideas which prevail regarding the average daily volume of urine and thus of the necessary water intake.

When a normal man is deprived of both water and food about 200 ml of water are obtained from the oxidation of body fat and protein but the remaining 1,300 ml must come from extracellular...
and intracellular fluid with an accompanying loss of sodium and potassium. Potassium is lost at a fairly constant rate, but after three to five days sodium is conserved by the kidneys so as to maintain the volume of extracellular fluid and all the water is then obtained from the cells. After injury, sodium is usually retained from the first day. Dehydration by thirsting probably causes death when between 30 and 40 per cent of body water has been lost; this is equivalent to 15 to 17 litres in a 70 kg (11 stone) man, which at 1 300 ml per day will be lost in ten to thirteen days.

When food is withheld but ample water is provided, fat and protein are still catabolized to provide calories, but body water in addition to that in the catabolized tissue no longer need be lost. If in addition 100 gm glucose are provided each day, the catabolism of protein tissue is reduced, ketosis is prevented and the quantity of solutes requiring excretion in the urine is reduced and the minimum urinary water requirements are thereby halved. No more than 100 gm glucose need be provided because this quantity reduces protein catabolism to the minimum rate of 40 gm per day. The provision of 100 gm glucose per day as 2 litres of 5 per cent glucose solution will provide a large surplus of water as well as optimal metabolic conditions for survival in a fasting normal person.

After severe accidental or surgical injury, most patients lose their appetite for food for up to four days but there is usually intense thirst throughout this period. This thirst is not relieved by the intravenous administration of glucose solution or isotonic saline and is possibly due to the intracellular dehydration resulting from the mobilization of intracellular water and its associated potassium. During the first three or four days after operations on the alimentary tract, the free consumption of water is undesirable because absorption and intestinal motility are impaired and the fluid consumed accumulates and leads to distention of the stomach. When drinking is allowed but accumulation of the water is prevented by continuous or intermittent gastric aspiration, gastric and intestinal secretions are removed with the water or other fluid which has been drunk. If it is necessary to continue gastric aspiration for more than forty-eight hours, this additional loss of electrolyte may accelerate or precipitate potassium deficiency in patients who have already been depleted of this ion by repeated vomiting before operation. Thirst is best relieved by washing out the mouth frequently with cold water and after partial gastrectomy, drinking may safely be forbidden for twenty-four to forty-eight hours.

The intravenous administration of glucose solution
unnecessary unless drinking is impossible for more than forty eight hours after operation. Because renal conservation of sodium is so efficient after injury, in the absence of abnormal losses there is no real need for sodium intake until the end of the first week after operation when it will be adequately provided by the consumption of food. Saline should not be administered even when gastric aspiration is necessary, unless the quantities of fluid removed are very large or cause reduction of blood volume. Severe water and sodium depletion can usually be corrected before operation is undertaken. The correction of potassium deficiency is dealt with later.

Water Intoxication

Immediately after the war of 1939-45 there was a marked increase in the frequency with which the intravenous administration of various fluids especially saline was employed. This has now given place to a more conservative and critical use of these fluids and oedema caused by excessive infusions of saline is much less common. This tendency to restrict the use of saline has sometimes led to the employment of larger quantities of glucose solution which are believed to be comparatively innocuous. However, in association with sodium deficiency, or when diuresis is delayed during the first week after injury or operation in patients aged more than fifty years or when renal function is impaired, the rapid injection of a large volume of glucose solution can lead to a state of water intoxication.

The danger of pushing fluids is too little recognized and severe clinical disturbances have been recorded after both rectal and oral administration of water. There may be stupor, confusion, amnesia and coma. There are no constant motor neurological effects but twitchings of the face and limbs are common and convulsions of epileptiform type may occur. The disturbance is not due simply to raised intracranial pressure but to a rapid dilution of the extracellular sodium which upset the normal equilibria at the cell membrane and leads to a transfer of water into the cells causing hypotonicity of the intracellular fluid and disturbance of cell function. Oedema is not invariably present because rapid administration rather than a large excess volume of water is the important factor and the water is widely distributed in the cells and in their environment. This disturbance is treated by the stoppage of further administration of water which may be followed by a slow spontaneous recovery by excretion of the retained water. In severe cases recovery may be accelerated by the slow intravenous
injection of hypertonic (2-5 per cent) saline until symptoms are relieved (Zimmermann and Wangensteen, 1952 Baskins et al., 1952)

Potassium Metabolism

Until about 1945 clinical interest in potassium metabolism was limited to its possible toxic action in the late and terminal stages of severe shock caused by injuries such as burns, and the existence of low serum concentrations in Addison's disease and Cushing's syndrome and in rare cases of alkalosis or infantile diarrhea. The investigations of Darrow (1945) and his associates on the treatment of infants with diarrhea showed that in this condition there was a migration of potassium out of the cells which could be reversed by the administration of potassium salts. Subsequently the application of their work to other diseases showed that potassium deficiency was a good deal more common in surgical patients than had been previously suspected (Randall et al., 1949 Evans 1950), and it is now evident that mild degrees of potassium deficiency may be responsible for a large amount of indefinite invalidism and sluggish convalescence.

In the body of a 70 kg adult there are about 150 gm of potassium 97 per cent of which is situated in the cells in a concentration of about 150 mEq per litre the remaining 3 per cent being in the extracellular fluid in a concentration of only 40 to 55 mEq per litre. It is probable that about two thirds of intracellular potassium is loosely bound in a protein complex and does not readily change its situation but the remainder together with the extracellular potassium moves freely between the interior of the cells and their surrounding medium. The old belief that the cell membrane is impermeable to sodium and potassium must now be abandoned because recent work by Cooke et al. (1952) has proved that in severe alkalosis associated with potassium deficiency large quantities of potassium may be transferred out of the cells and be replaced by sodium and hydrogen ions. During cellular catabolism in starvation and after severe injury potassium is lost from the cells whereas during cellular anabolism in refeeding after starvation potassium moves into the cells. A striking example of rapid potassium uptake by the cells from the extracellular fluid occurs during the treatment of diabetic acidosis when it may be so rapid as to depress the extracellular potassium concentration well below the normal range.

The normal daily intake of potassium is about 2-3 gm (75-100 mEq) between 2 and 5 gm are secreted into and reabsorbed from the alimentary tract and 2-3 gm are excreted into the urine.
POTASSIUM DEFICIENCY

Thus intake is balanced by output in the urine and although in health the body content of potassium changes little, there are large daily movements and exchanges of potassium in the body for the normal intake and output are each rather larger than the whole quantity of potassium in the extracellular fluid. The maintenance of a normal quantity of potassium in the body depends on a steady intake because there does not appear to be a renal conservation of potassium in depletion such as exists in the case of sodium. During starvation when calories are derived from the catabolism of fixed tissue which contains potassium, survival depends on this ability to excrete potassium in the urine, if this were not possible, death would rapidly ensue from the accumulation of potassium in the extracellular fluid resulting in elevation of the potassium concentration. Berliner et al (1950) believe that urinary potassium excretion is largely independent of both plasma concentration and the rate of glomerular filtration.

The daily loss of 2-3 gm potassium in the urine continues even when intake of potassium is reduced or stopped, or when there are abnormal losses of potassium in vomitus, gastric aspirations, diarrhoea or discharges from intestinal fistulae. Since the concentration of potassium in the intestinal secretions exceeds that of the extracellular fluid potassium must be mobilized from the cells to replace that lost in these secretions and in the urine. Despite the daily loss of 5 or 6 gm potassium the plasma concentration remains steady until the intracellular deficiency becomes very large. Darrow (1945) estimated that 25 per cent or more of the initial content of about 150 gm might be lost in this way. The replacement of losses of this magnitude may be difficult and may take up to two weeks to accomplish.

The large losses of potassium sustained by repeated vomiting or by prolonged gastric aspiration have been studied clinically and experimentally by Webster et al (1950). They believe that such potassium losses which appear to diminish intestinal motility may exaggerate so-called paralytic ileus. In addition there appears to be an increase in the volume of gastric secretion the potassium content of which is undiminished although the sodium and chloride concentration may fall. As others (notably Gamble 1940-47) have pointed out the intravenous administration of glucose solutions or isotonic saline also increases the urinary excretion of potassium. Potassium deficits and intracellular hydration can be restored only if potassium salts are administered.

The diagnosis of potassium deficiency is difficult because of the predominantly intracellular situation of body potassium and the
lack of any clinically convenient means of measuring the total quantity of potassium in the body. With the aid of the flame photometer the rapid measurement of the concentration of potassium in biological fluids is now possible but the routine application of such measurements is still uncommon in patients subjected to gastric aspiration or with losses of fluid caused by diarrhea or intestinal fistula. The earliest signs are probably drowsiness poor appetite muscular weakness and low grade ileus. In the fully established state, drowsiness is intense and muscular weakness is very marked the patient lying slumped in bed incapable of keeping his eyes open or of speaking more than a few words at a time. There may be urinary incontinence and difficulty in swallowing the blood pressure and pulse rate are low and the skin looks dirty. The serum potassium concentration is not invariably reduced even in advanced potassium deficiency because the extracellular potassium is only a very small part of the total body potassium and is the result of the combined effects of external loss in the urine and in lost body fluids on the one hand and of the mobilization of cellular potassium on the other hand apart from these balance variations in extracellular fluid volume alter the serum potassium concentration and reduction in extracellular fluid which is particularly liable to follow the rapid loss of gastrointestinal secretions raises serum potassium concentration even when total extracellular potassium is reduced. Measurement of the hematocrit gives valuable assistance in the interpretation of the serum concentrations of sodium bicarbonate and chloride as well as of potassium. After extracellular fluid volume has been increased by the intravenous administration of saline or even of a fluid which contains potassium salts it is not uncommon to find that the serum potassium concentration has fallen because of dilution of the small quantity of extracellular potassium by the administered fluid and also because of an increased rate of excretion of potassium in the urine.

Potassium deficiency may lead to abnormalities of the electrocardiographic tracing, but these changes are neither invariably present nor always related directly to the severity or duration of the potassium depletion and cannot be regarded as more than confirmatory evidence of depletion. The E.C.G. is of more value in diagnosing potassium excess than deficiency. Because severe potassium deficiency may exist when both the serum potassium concentration and the E.C.G. tracing are normal it seems wise to rely for diagnosis chiefly on clinical suspicion aroused by unusual drowsiness and muscular weakness in a patient who has a known
TREATMENT OF POTASSIUM DEFICIENCY

History of prolonged loss of body fluids by vomiting, aspiration or from a fistula.

Mild potassium deficits result from all types of injury and inflammation and can be satisfactorily replaced by potassium consumed in the ordinary diet during convalescence, the wisdom of our ancestors in prescribing fruits and fruit juices, beef and chicken tea broth and thin soups for the convalescent patient has been endorsed by analysis of these invalid foods which show them to contain relatively large quantities of potassium salts. Provided that rapid replacement is not essential more severe deficiencies can be replaced by the oral administration of potassium chloride in doses of 1 gm (13 mEq K+) upwards to a total of 12 gm (150 mEq K+) per day. When there is coma or extreme drowsiness with anorexia in an unconscious patient parenteral administration of potassium salts becomes necessary at least in the initial stage of treatment. Before an intravenous infusion of fluid containing potassium is started, a urinary output at the rate of at least 500 ml per twenty-four hours must be ensured if necessary by the infusion of glucose solution in order to allow for the excretion of any excess of potassium which may be inadvertently administered, thus avoiding the extracellular accumulation of potassium leading to serum concentrations exceeding 7 mEq per litre which cause severe conduction disturbances of the cardiac muscle and may lead to cardiac arrest. It is always wise to record the pulse rate every hour during potassium infusions and if it slows unduly to replace the potassium solution with glucose solution. Potassium salts should not be administered during the first forty-eight hours after injury or after the onset of an inflammatory reaction to injury because there normally is a large diuresis of potassium during this period, or in the presence of anuria, marked oliguria or other severe disturbances of renal function.

Potassium deficiency may be accompanied by alkalosis when the cause is prolonged vomiting of gastric aspiration, or by acidosis when it is due to diarrhoea. The amon to be administered with the potassium should be varied according to the accompanying disturbance. In potassium deficiency accompanied by alkalosis potassium chloride is usually employed the usual method being to add 20 ml of a concentrated solution (10 per cent.) of potassium chloride to each 500 ml isotonic glucose solution thus providing 4 gm potassium chloride (52 mEq K+) per litre. Because in potassium deficiency with alkalosis there is a shift of sodium into the cells which renders the alkalosis resistant to saline therapy alone it is essential that potassium chloride be administered first before any sodium chloride is given if improvement is to be achieved.
Later when some potassium has been replaced, the concentrated potassium chloride may be mixed with isotonic saline instead of glucose. For the correction of potassium deficiency combined with acidosis, Darrow’s K lactate solution containing 27 gm potassium chloride (35 mEq K+), 40 gm sodium chloride and 52 gm sodium lactate per litre is best. The rate of intravenous administration of solutions containing potassium should not exceed 20 mEq potassium per hour and considerably less than this rate is usually advised. Darrow has estimated that up to 3.5 mEq potassium per kilogram body weight (245 mEq potassium per 70 kg (11 stone) man) can be given per day.

Plasma Substitutes

Prior to 1940 shock due to plasma loss such as occurs after burning and scalding was usually treated by the rapid infusion of solutions of gum acacia in saline. Some adverse effects associated with these infusions were reported and were ascribed to the gum acacia, but the general experience was that provided reliable preparations were used gum acacia solutions were safe and produced satisfactory and lasting improvement in shocked patients. Following the establishment of blood banks, human plasma became freely available and the use of gum acacia declined. Since the war because of the risk of homologous serum disease and of reactions which occurred with a widely variable frequency during and after plasma infusions there has been a tendency to employ other fluids in the treatment of shock due to plasma loss. The plasma substitutes at present available are gum acacia, dextran, and polyvinyl pyrrolidone. The use of plasma substitutes is increasing and some discussion of their ideal properties and behaviour in the body seems timely.

A plasma substitute must not be toxic, pyrogenic or antigenic; it must be stable for long periods at wide ranges of temperature easily sterilized and capable of being cheaply made in a constant form. Its viscosity and osmotic pressure should resemble those of blood, and although initially enough must remain within the blood stream to produce a lasting increase in blood volume, ultimately the substance should be completely metabolized or excreted. The retention of injected material within the blood vessels depends largely on the molecular weight of the substance employed. All the preparations which are at present used as plasma substitutes contain mixtures of molecules of different weights and the behaviour of a particular preparation naturally depends on the relative proportion of molecules of different molecular weights which it contains. For
example, material of a molecular weight less than about 70,000 will be rapidly excreted in the urine and the effect of such material on blood volume will be short. Solutions which contain a large proportion of such material of small molecular weight will cause a marked diuresis after injection. There is reason to believe that material having a molecular weight between 70,000 and 130,000 is probably largely lost from permeable capillaries in the rest of the body, so that only that portion of injected material the molecular weight of which exceeds 130,000 remains for any length of time within the vessels and will by reason of its water holding capacity, be capable of maintaining an increase in blood volume. This fraction will be retained in the circulation until it is either metabolized, deposited in the cells of the reticulo-endothelial system or excreted after partial breakdown. Material with a molecular weight exceeding 250,000 causes undesirable aggregation of red cells and increase in the sedimentation rate and viscosity of the blood. An ideal preparation should consist of a large proportion of material of molecular weight between 130,000 and 200,000 and as little as possible above 250,000 and below 70,000, and that between 70,000 and 130,000 should be as small as economically possible.

Crude preparations of the substances available contain a mixture of particles of molecular weight ranging from a few thousand to several million. The large molecules must be hydrolysed or otherwise broken down and the larger and smaller molecules must then be removed by some process of fractionation so as to leave a mixture the majority of which will be retained in the vessels for a sufficiently long time after injection. The difficulties associated with large scale degradation and fractionation vary with different materials and are important factors in the economic production of a product with the desirable narrow range of molecular weights.

Gum acacia has been extensively used as a 6 per cent solution in 0.9 per cent saline since it was introduced into clinical use by Bartholm in 1917. It is obtained from the natural gum of the acacia thorn and has other wide applications in industry. Provided that reliable preparations are used reactions are rare. Like polyvinyl pyrrolidone and dextran its larger molecules are deposited in the reticulo-endothelial system but Bollman (1951) has shown that in dogs liver function was unimpaired ten years after the injection of very large quantities of acacia. Amberson (1937) reported that 61 per cent was retained in the circulation for twenty-four hours after injection.

Polyvinyl pyrrolidone (PVP) is a synthetic water soluble polymer of acetylene which is usually employed as a 3.5 per cent solution.
and is also known as periston kollidon or plasmasan. PVP is not metabolized in the body, but up to 75 per cent or more of the injected material has been recovered from the urine and as much as 50 per cent may be excreted during the first twenty-four hours after injection. Clinical observations suggest that PVP is not as effective as either gum acacia or dextran in the treatment of low blood volume states.

Dextran is a long chain polysaccharide resulting from the bacterial polymerization of glucose molecules. It was first prepared and used as a plasma substitute in Sweden, and since 1946 has been widely used in other countries (Bohmansson et al., 1946; Thorsen, 1949; Bull et al., 1949). Improvements in the method of fractionation have resulted in the production of solutions of which only 10 per cent is lost in the urine in the first twenty-four hours after injection and 60 per cent remains in circulation for a day or longer. There is less wastage of the dose in the urine and tissue fluid, and a smaller volume is required to produce a particular effect. This preparation represents an important advance towards the achievement of a theoretical ideal plasma substitute. Dextran like all other substances of large molecular size may be deposited in the reticuloendothelial system, but this does not appear to cause ill effects.

There have been a number of reports of anaphylactic reactions following the injection of dextran of both Swedish and British manufacture. These reactions are more common when dextran is injected into normal control subjects than when it is used as part of the treatment of a shocked patient. Thorsen (1949) found an incidence in Sweden of only 0.8 per cent compared with 8.2 per cent after blood transfusion. The high incidence of reactions in the United States of America was ascribed to the commoner occurrence of certain types of pneumococcal antibodies there. It is possible that in normal subjects the reactions associated with large infusions of dextran in normal subjects is due to overfilling of the circulation rather than to antigenic reactions.

Each of these three preparations (gum acacia, PVP and dextran) by causing aggregation of red cells may interfere with blood grouping reactions and extra care is required in assessing results. This can be avoided if a blood sample is withdrawn before the plasma substitute is injected.

The best results are obtained when plasma substitutes are injected rapidly, for example the first 500 ml in ten or fifteen minutes and the next 500 ml in twenty minutes, and even faster injection may be necessary when severe blood or plasma loss has occurred. Slow maintenance infusions are not advisable. The principal
indications for the employment of plasma substitutes are plasma loss due to burning or scalding when there is delay in obtaining or matching blood for transfusion instead of blood when the volume required does not exceed 1 litre and as a supplement to blood when in spite of full replacement of blood loss the blood pressure has not been fully restored.

References

Anderson W R 1937 *Biol. Rev.* 12 48

Banks J I Keith M and Schlesinger H M 1942 *Amer J Dis Child* 32 618

Bayliss W M 1918 *Intra-Venous Injections in Wound Shock* London Longmans Green & Co

Berliner R W Kennedy T J Jr and Hilton J G 1940 *Amer J Physiol* 162 748

Bommanoson C Rosenqvist H Thorsen G and Winbrand O 1946 *Acta chir. scand.* 94 149

Bohman J I 1931 *Arch. Surg.* 63 749

Cooke R E Sugar W I Creek D B Cowie J I and Darrow D C 1952 *J Clin Invest.* 31 798

Darrow D C 1949 *New Engl J Med.* 233 91

Dunlop F I 1927 *Basil Metabolism in Health and Disease* Phila delphia Lea and Febiger

Evans J I 1930 *Ann Surg.* 93 441

Fox C J and Bahr H 1947 *Amer J Physiol.* 151 1 5

Cammel J I 1946-47 *Harvey Lectures* 42 247

Randall H T Harp D V Lockwood J S and Werner S C 1949 *Surgery* 26 341

Thorsen C 1949 *Lancet* i 172

Weintraub R Hendrikson H W and Currip D J 1950 *Trans Amer Surg Ass.* 58 4 8

Zimmermann B and Wangensteen O H 1952 *Surgery* 31 691
and is also known as periston, lodidon or plasmosan. PVP is not metabolized in the body but up to 75 per cent or more of the injected material has been recovered from the urine, and as much as 50 per cent may be excreted during the first twenty four hours after injection. Clinical observations suggest that PVP is not as effective as either gum acacia or dextran in the treatment of low blood volume states.

Dextran is a long chain polysaccharide resulting from the bacterial polymerization of glucose molecules. It was first prepared and used as a plasma substitute in Sweden and since 1946 has been widely used in other countries (Bohmansson et al., 1946; Thorsen, 1949; Bull et al., 1949). Improvements in the method of fractionation have resulted in the production of solutions of which only 10 per cent is lost in the urine in the first twenty four hours after injection and 60 per cent remains in circulation for a day or longer there is less wastage of the dose in the urine and tissue fluid and a smaller volume is required to produce a particular effect. This preparation represents an important advance towards the achievement of a theoretical ideal plasma substitute. Dextran, like all other substances of large molecular size may be deposited in the reticuloendothelial system but this does not appear to cause ill effects.

There have been a number of reports of anaphylactic reactions following the injection of dextran of both Swedish and British manufacture. These reactions are more common when dextran is injected into normal control subjects than when it is used as part of the treatment of a shocked patient. Thorsen (1949) found an incidence in Sweden of only 0.8 per cent compared with 8.2 per cent after blood transfusion. The high incidence of reactions in the United States of America was ascribed to the common occurrence of certain types of pneumococcal antibodies there. It is possible that in normal subjects the reactions associated with large infusions of dextran in normal subjects is due to overfilling of the circulation rather than to antigenic reactions.

Each of these three preparations (gum acacia, PVP and dextran) by causing aggregation of red cells may interfere with blood grouping reactions and extra care is required in assessing results. This can be avoided if a blood sample is withdrawn before the plasma substitute is injected.

The best results are obtained when plasma substitutes are injected rapidly, for example the first 500 ml in ten or fifteen minutes and the next 500 ml in twenty minutes and even faster injection may be necessary when severe blood or plasma loss has occurred. Slow maintenance infusions are not advisable. The principal
paved the way to a new era of chemotherapy. In addition to the modern range of sulphonamides, a group of drugs showing antituberculosis activity, the sulphones have been developed.

A recent addition to the antituberculous drugs are the thiosemicarbazones, part amnosalicylic acid and iso nicotinic acid derivatives.

Sulphonamides

The wide range of modern sulphonamides has been obtained by the substitution of different chemical groups about the sulphonamide nucleus. On theoretical grounds it is unlikely that any sulphonamide will surpass sulphathiazole and sulphadiazine in antibacterial activity. Further improvements have been concerned with the reduction of toxicity—nausea, headache, drug fever, skin eruptions and damage to blood-forming organs—and with changes affecting the speed of absorption and excretion and the solubility of the acetylated or conjugated compounds excreted in the urine. Sulphasalmezathione (sulphamezathione, sulphasalmezathione) is more rapidly absorbed than sulphadiazine to which it is closely allied and more slowly excreted than sulphathiazole, thus adequate blood concentrations can be maintained with doses given at six-hourly intervals. It is however usually given in the same dosage as that for sulphathiazole and sulphadiazine, namely for an adult an initial dose of 2-4 gm followed by 1 gm four-hourly for two days, 1 gm six-hourly for two days and 1 gm eight-hourly for two days.

Another sulphonamide derivative is sulphamerazine, which is even more slowly excreted, with this drug a high blood level can be achieved with smaller and less frequent doses than with any other sulphonamide. Although sulphakerazine and sulphadiazine may be used alone in the treatment of acute infections, this is not recommended because of the danger of renal obstruction; they are, however, very suitable for combining with other sulphonamides in mixtures such as Sulphadiazin which contains approximately equal parts of sulphathiazole, sulphadiazine and sulphamerazine. The danger of renal damage is thereby greatly reduced because whereas the antibacterial activity of the various sulphonamides in the mixture is additive, the solubilities of the compounds excreted in the urine are independent of one another depending solely upon the concentration of each drug in the urine. Sulphadimidone, its isomer, sulphasemidine (Flomac) and sulphafurazone ('Gantrisin') which are much more soluble than sulphadiazine or sulphamerazine are almost entirely free from the risk of crystallization in the urinary tract; they are also three of the least toxic sulphonamides. Since
CHAPTER II

ANTIBACTERIAL THERAPY

A C CUNLIFFE

The progress of a bacterial infection may be influenced in three ways
(a) by measures directed towards the maintenance or improvement of the natural non specific defensive mechanisms of the body, (b) by immunological procedures which provide or stimulate the production of specific antibodies and (c) by the administration of antibacterial drugs

Within recent years there have been no immunological advances comparable in importance to the surgeon with the rapid developments in chemotherapy, this chapter therefore is confined to the discussion of some of the more important antibacterial substances and their uses.

The majority of substances with a disinfectant action belong to the class of general protoplasmic poisons and are as likely to damage the host's tissues as to kill parasites infecting the body. For use in the treatment of infections in the living animal a substance must have a selective action on the parasite and be relatively non toxic to the host's tissues. Such antibacterial substances belong to two classes: synthetic drugs and natural substances from other microbes—antibiotics. It should be pointed out that since several of the antibiotics have been synthesized chloramphenicol in particular being manufactured by a synthetic process this distinction is somewhat artificial. Further it should be noted that the term antibiotic as applied without reference to toxicity and that only a small number of those discovered are therapeutic agents.

CHEMOTHERAPEUTIC AGENTS

The brilliant successes of chemotherapy which followed Ehrlich's synthesis in the early years of the century of arsphenamine and other organic arsenicals were mainly confined to various spirochaetal and protozoal diseases. The greatest hope in the treatment of bacterial disease appeared to lie in the 'magic bullets' of the antibodies. In 1935, however Domagk's discovery of prontosil
thin semicarbazones have been investigated, one of these, amithiozone, has been studied in human tuberculosis but it appears to have no greater effect than paraaminosalicyclic acid (PAS) which is very much less toxic. PAS does not compare with streptomycin or isoniazid in its antibacterial effect but it can be administered for very long periods with little risk of the emergence of drug resistant strains. Toxic manifestations which are mainly gastrointestinal, are relatively rare. Its most valuable role is that of an adjuvant to streptomycin therapy.

Many isomers and derivatives of nicotinic acid have powerful effect on the tubercle bacillus in vitro and in vivo, the effectiveness of isonicotinic acid hydrazide (isoniazid) has been confirmed by clinical trial but its therapeutic effect is short lived, and its later ineffectiveness is associated with the development of drug resistance. This resistance is however, greatly delayed if streptomycin and/or PAS is given at the same time.

ANTIBIOTICS

The word "antibiosis" was first used by Vuillemin in 1899 to describe the process whereby "one creature destroys the life of another in order to sustain its own". Ten years later it was applied to microbial antagonism by Marshall Ward. In 1942 Waksman introduced the term 'antibiotic' for the chemical substances of microbial origin that possess antimicrobial activity. Innumerable examples of bacterial antagonism have been recorded since the earliest days of bacteriology. It may now, however, seem surprising to find that from the first the possibility of therapeutic application was appreciated. For example, in 1887 Pasteur and Joubert described the destruction of anthrax bacilli by cultures of common bacteria and concluded these facts perhaps justify the highest hopes for therapeutics.

The first antibiotic was introduced to medicine by Emmerich and Low in 1899. This was an extract from cultures of Ps. pyocyanea known as pyocyanin which was bactericidal to many bacteria including B. anthracis, Bt. pyogenes and Staph. aureus. Pyocyanin was used sporadically during the next thirty years in the treatment of a variety of human infections both topically and parenterally but its use became less frequent largely because different preparations varied greatly in activity and in toxicity. Many other antibiotics were also described during this time but none was comparable in importance with penicillin which was discovered by Fleming in 1928. Impressed by its combination of high antibacterial activity
nearly all the sulphonamides and their conjugated forms are more soluble in alkaline conditions it is important in addition to ensuring an adequate urinary output to administer alkalis. The solubility of sulphasomunidine and sulphadiazine however, is such that given a satisfactory urinary output alkalis are unnecessary. "Urolucosid" is another highly soluble sulphonamide of low toxicity which has been used for many years in Denmark. It is said to give a satisfactory bacteriostatic urinary concentration when doses of 0.1–0.2 gm are given five times a day. Not only is the maintenance of an alkaline urine unnecessary but a reduced fluid intake is said to be advantageous. Urolucosid may prove of particular value when long continued treatment is necessary.

Owing to their poor solubility in aqueous solutions the sulphonamides cannot be given parenterally except in the form of their sodium salts which being highly alkaline, are liable to give rise to venous thrombosis or tissue necrosis at the site of injection. Sulphacetamide (Albuclid) is an exception, its sodium salt which is neutral is relatively non irritant to the tissues and can be safely introduced in the eye or paranasal sinuses.

Of widespread use in abdominal surgery are the poorly absorbed sulphonamides sulphaquinidine, succinyl sulphathiazole and phthalyl sulphathiazole which are used for their local bacteriostatic effect in the lumen of the intestine. Of these sulphaquinidine has the lowest therapeutic activity and is also most liable to give toxic reactions since as much as 30 to 60 per cent of this drug is absorbed except in cases of severe ulceration of the intestine not more than about 5 per cent of the two sulphathiazole derivatives is absorbed. The total numbers of bacteria in the gut in particular the coliform bacilli are very greatly reduced but it is extremely doubtful if sterility is ever achieved. Succinyl sulphathiazole has the occasional disadvantage of producing a semi-solid stool. Phthalyl sulphathiazole on the other hand does not change the character of the stool and is reported to have two to four times the antibacterial activity of the former. The usual dosage is 10 to 12 gm per diem of succinyl sulphathiazole and 3 to 12 gm of the phthalyl derivative.

Various Synthetic Antituberculous Drugs

The sulphones, derivatives of dimino diphenylsulphone are of historic interest in that they were the first drugs shown to have a therapeutic effect on experimental tuberculosis infections. Their toxicity however prevented their use in human tuberculosis but they have proved valuable in the treatment of leprosy. Various
preparations are amorphous and yellow or brown. When penicillin is stored in the dry state, potency is maintained unaltered for many years at room temperature. In aqueous solutions, on the other hand, it is relatively unstable, being rapidly hydrolyzed in both acid and alkaline conditions and even when buffered and kept in a refrigerator is stable only for a few weeks.

Systemic Administration

Benzy1penicillin is highly soluble and aqueous solutions are very rapidly absorbed from the tissues, the blood concentration reaching its peak within fifteen minutes of intramuscular injection provided the dose is not very large. The reason why comparatively enormous doses have to be given therapeutically is that penicillin leaves the body as fast as it reaches the kidneys; thus, this sharp rise of blood level is followed by a fall which at first is almost as steep, then progressively less. In total anuria, it has been estimated that an effective blood level could be achieved with a dose of only 350 units. Caronamide and various other substances which interfere with excretion of penicillin have been used to obtain higher and more prolonged blood concentrations but they are not without danger since the effective dose is close to the toxic one. Since the speed of excretion depends on blood concentration, it follows that the duration of effect is by no means directly proportional to the dose doubling the dose only prolongs the effect by about one third. Thus, whereas penicillin is detectable in the blood for two and a half hours after an intramuscular dose of 25,000 units, it is detectable for only about three hours after 50,000 units five hours after 250,000 units, and seven hours after 500,000 units. Since about 60 per cent is excreted by the kidneys in an active form, concentrations in the region of 100 units per ml are found in the urine after a dosage of 250,000 units a day.

With substances such as sulphonamides and aureomycin whose action is mainly bacteriostatic it is essential to maintain an inhibitory concentration until the body's defence mechanisms have dealt with the infection since bacteria will resume multiplication as soon as the concentration falls. Penicillin, on the other hand, though in low concentrations mainly bacteriostatic, in slightly higher concentrations is actively bactericidal. Further, it differs from most other bactericidal substances in that the speed of killing does not increase indefinitely with the concentration the optimal concentration for a sensitive organism such as a staphylococcus is quite low—about 0.1 unit per ml. In these conditions 99 per cent or more of exposed bacteria may be killed within a few hours.
with low toxicity for leucocytes, Fleming suggested its use in the
treatment of human infections, but his attempts to test this were
unsuccessful owing to the instability and low potency of the peni-
cillin preparations. The discovery of tyrothricin by Dubos in 1929
is important even though it is too toxic for systemic administration
because the extensive investigations which led to the separation of
the active substance into two crystalline polypeptides gramicidin
and tyrocidine represented a great advance in the study of
antibiotics.

The modern antibiotic era really started in 1940 when the success
of Florey's team at Oxford in preparing penicillin in a potent and
stable form made clinical trials possible. The demonstration that
penicillin was substantially non-toxic to animal tissues and a power-
ful chemotherapeutic agent led to an outburst of research all over
the world. Hundreds of antibiotics old and new, have since been
investigated. So far few approach and none exceed penicillin with
regard to the ratio of potency to toxicity but whereas the activity of
penicillin is largely limited to the cocci and gram positive rods, many
of the newer antibiotics (the so-called broad spectrum antibiotics)
affect a very much wider range of organisms including gram
negative bacilli, the rickettsia and some of the larger viruses.

Streptomycin was isolated from Streptomyces griseus in 1944 by
Waksman and his collaborators in the course of an intensive search
amongst soil organisms for an antibiotic active against gram
negative bacteria. Chloramphenicol in 1947, aureomycin in 1948,
neomycin in 1949 and terramycin and viomycin in 1950 were also
isolated in America from species of Streptomyces. Also prolific in
antibiotics is the genus Bacillus where bacitracin and polymyxin are
products of B. subtilis and B. polymyxa species respectively.

Penicillin

Penicillin is the name given to the sodium, potassium or calcium
salts of the antimicrobial organic acids that are produced by
Penicilium notatum. At least five penicillins of differing chemical
composition are recognized of these benzylpenicillin (penicillin H
or G) is the most commonly manufactured for medical use
Penicillin O is available in the U.S.A and said to be useful for the
treatment of patients sensitive to penicillin G with the increasing
number of available chemotherapeutic agents however an anti-
biotic entirely unrelated to penicillin would seem to be a safer choice
in these conditions.

Pure benzylpenicillin is a white crystalline powder less pure
some wounds and in certain experimental abscesses but it has yet to be proved this is true of an area of inflammation without tissue breakdown. The experimental work of Light has failed to show evidence of it.

Slowly Absorbed Preparations

The earliest preparation used to delay absorption was a suspension of calcium penicillin in an oily base containing beeswax. The beeswax however, which was essential for the delaying effect, tended to give rise to severe local reactions. The use of this type of preparation has now been almost entirely superseded by aqueous or oily suspensions of the relatively insoluble procaine penicillin which is a compound of benzylpenicillin and procaine having an antibiotic activity equivalent to that of penicillin itself. The rate of absorption of procaine penicillin varies considerably with its method of manufacture, depending upon the shape and size of the crystals; hence one of the manufacturers' difficulties is the production of crystals large enough to dissolve slowly and compact enough to pass through a small needle. The usual dose is 300,000 units. After an intramuscular injection of this dose of a good procaine penicillin in arachis oil the blood level rises to a maximum of 1 unit per ml in four hours and then falls very slowly so that a detectable amount is present after twenty-four hours. With preparations containing aluminium stearate absorption is still further delayed the blood concentration never reaches as high a level but may still be bacteriostatic after two days. After a single dose of 2,000,000 units of one of these preparations a bacteriostatic level is maintained for six to seven days in bed patients and usually for five days in ambulant persons. An interesting addition to the so-called repository preparations is N,N'-dibenzylethylenediamine penicillin ('Pentadural' or Benzathacin'). Fletcher and Knappett (1953) found that after an intramuscular injection of 600,000 units of this preparation penicillin was detectable in the blood of all subjects after three days of the majority after fourteen days and of a few even after twenty-eight days but during most of this time the blood concentrations were very low. It seems to be generally true that prolonged action can only be achieved at the expense of low and often intermittent blood levels.

Oral Route

Penicillin is destroyed by acid in the stomach, by bacterial enzymes in the large intestine and in a way imperfectly understood, in the small intestine. There is great individual variation in the
few of Bigger's 'persisters' will always remain un killed and since penicillin acts only on multiplying bacteria, it is held by many that intermittent treatment is advantageous in that it allows these persisters to begin multiplying during lapses in treatment and thus to become susceptible to further doses of penicillin.

On the other hand, many experts led by Eagle believe in the maintenance of a bactericidal concentration in the tissues throughout treatment. Eagle, Fleischman and Levy (1953) have added evidence in support of this view as the result of treating groups of mice with experimental streptococcal infections by a number of different penicillin régimes, varying both the dose and the intervals between doses. Recovery was quicker and more economical in penicillin when penicillin was given three hourly than when the interval between doses was longer. Although arguments from mice to men must be made with caution, it is probable that in this case they would be valid for there is a considerable amount of supporting clinical experience—for example in the number of patients whose infections respond to three or four hourly injections in hospital, after the previous failure of outpatient treatment with large doses of penicillin given once or twice daily.

There is on the other hand abundant clinical evidence that in the treatment of many infections the need of a continuous bactericidal concentration is unnecessary. Eagle and Musselman (1949) have shown that the time required for surviving bacteria to resume growth after the disappearance of penicillin from the tissues may vary from one to four hours. The following intervals which are based on consideration of this factor are generally considered suitable between different doses for patients in whom it is desirable that the drug should exert a full and uninterrupted effect.

<table>
<thead>
<tr>
<th>Dose of Penicillin in Aqueous Solution (given intramuscularly or subcutaneously)</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,000 units</td>
<td>3 hours</td>
</tr>
<tr>
<td>50,000 units</td>
<td>4 hours</td>
</tr>
<tr>
<td>100,000 units</td>
<td>6 hours</td>
</tr>
<tr>
<td>250,000 units</td>
<td>5 hours</td>
</tr>
<tr>
<td>500,000 units</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

Advocates of widely spaced doses of penicillin often contend that a large dose of aqueous penicillin exerts a much more prolonged effect than the rate of its elimination from the blood would suggest, the high initial blood concentration is said to facilitate diffusion into focal sites of infection where penicillin remains long after the blood has been cleared of it. It is true that penicillin persists in the exudate of
some wounds and in certain experimental abscesses, but it has yet to be proved this is true of an area of inflammation without tissue breakdown. The experimental work of Lach has failed to show evidence of it.

Slowly Absorbed Preparations

The earliest preparation used to delay absorption was a suspension of calcium penicillin in an oil base containing beeswax. The beeswax, however, which was essential for the delaying effect, tended to give rise to severe local reactions. The use of this type of preparation has now been almost entirely superseded by aqueous or oily suspensions of the relatively insoluble procaine penicillin which is a compound of benzylpenicillin and procaine having an anti bacterial activity equivalent to that of penicillin itself. The rate of absorption of procaine penicillin varies considerably with its method of manufacture depending upon the shape and size of the crystals; hence one of the manufacturers difficulties is the production of crystals large enough to dissolve slowly and compact enough to pass through a small needle. The usual dose is 300,000 units. After an intramuscular injection of this dose of a good procaine penicillin in arachis oil the blood level rises to a maximum of 1 unit per ml in four hours and then falls very slowly so that a detectable amount is present after twenty-four hours. With preparations containing aluminium stearate absorption is still further delayed, the blood concentration never reaches as high a level but may still be bacteriostatic after two days. After a single dose of 2,000,000 units of one of these preparations a bacteriostatic level is maintained for six to seven days in bed patients and usually for five days in ambulant persons. An interesting addition to the so-called repository preparations is N,N-dibenzylethylenediamine penicillin (Penidural or ‘Benzethacil’). Fletcher and Knappett (1953) found that after an intramuscular injection of 600,000 units of this preparation penicillin was detectable in the blood of all subjects after three days of the majority after fourteen days and of a few even after twenty-eight days but during most of this time the blood concentrations were very low. It seems to be generally true that prolonged action can only be achieved at the expense of low and often intermittent blood levels.

Oral Route

Penicillin is destroyed by acid in the stomach by bacterial enzymes in the large intestine and in a way imperfectly understood in the small intestine. There is great individual variation in the
mount absorbed in general five to ten times as much aqueous penicillin G must be given by mouth as intramuscularly in order to achieve the same effect. It is best given on an empty stomach but even when large doses are administered with antacids about 5 percent of adults fail to attain a satisfactory blood concentration. In infants absorption is much more constant and therapeutic blood levels can be reliably maintained when doses of 100,000 units of penicillin G are given four hourly (Murray and Crawford 1951) Cathie and MacFarlane (1953) claim that as an oral preparation N\(^N\) dibenzylethylene diamine penicillin is superior to any other penicillin derivative they tested. They found that in children a satisfactory blood level was maintained with six hourly doses of 300,000 units. They also reported uniformly good absorption amongst a small group of adults to which this dose was given. If these findings are confirmed our views on administration of oral penicillin for older children and adults may need reconsideration.

To sum up penicillin can be given systemically by a number of different methods. The choice in any given instance will depend on the severity of the infection, the sensitivity of the organism, the type of patient and various economic and administrative factors. Thus while a single large dose of penicillin will cure acute gonorrhoea
owing to the extreme sensitivity of the gonococcus, a six weeks course of at least 2 to 4 million units a day is needed for the treatment of subacute bacterial endocarditis where the organisms are commonly less sensitive and the body's local defence measures negligible. In the more severe infections intramuscular or subcutaneous injections of aqueous benzyl penicillin (G) are to be preferred since higher and more reliable blood concentrations can be maintained than by any other means. The slowly absorbed preparations are however, valuable in that being given less frequently, they cause less disturbance to the patient, they are particularly well suited to general practice and out patients' departments the therapeutic efficacy of procaine penicillin in acute staphylococcal infections has been confirmed by clinical trial (Griffiths et al 1949 and 1950) Many repository preparations are fortified with benzylpenicillin so that higher initial blood concentrations are achieved. Proof of the reliability of the oral route is so far confined to infants and young children

Local Administration

Penicillin may be applied to the site of infection in many ways, and generally for one of two reasons—that of economy or more often, in order to obtain concentrations unobtainable by systemic administration. The last is particularly true of intrathecal injections since, owing to the size of the molecule very little penicillin reaches the cerebro spinal fluid from the blood even when the concentration is high. To avoid reactions it is essential that impure penicillin or solutions containing preservatives should not be given, 10,000 units of sodium benzylpenicillin is a usual dose—this will maintain an adequate level for twenty four hours.

Penicillin solutions may often with advantage be injected into serous sacs such as infected pleural or joint cavities, into nasal sinuses and abscess cavities the dose depending upon the size of the cavity. In the same way that penetration of penicillin from the blood stream into these cavities is slow so is absorption from them and high concentrations will remain often for several days.

Penicillin may be applied to wounds in solution, as an ointment in a simple base or in a powder usually containing a sulphonamide (preferably sulphathiazole) and often streptomycin. External infections of the eye may be treated either by the instillation of aqueous solutions at hourly intervals or by ointments applied every two or three hours. Since it does not penetrate readily into the interior of the eye from the blood stream, in deeper infections penicillin is generally injected subconjunctivally, if a dose of
1,000,000 units is given with adrenaline a high intraocular concentration is maintained for over twenty-four hours.

Bacteria do not appear readily to become resistant to penicillin under natural conditions since the widespread therapeutic use of penicillin has with one exception resulted in no great increase in the incidence of resistant strains. Further, in the case of this exception Staphylococcus aureus it is now generally agreed that the high proportion of resistant penicillinase producing strains found in hospitals is the result of cross infection — the majority of staphylococcal infections developing outside hospitals are fully sensitive to penicillin.

STREPTOMYCIN

Streptomycin is a basic substance which is commonly used as the sulphate hydrochloride or calcium chloride complex and also in a hydrogenated form dihydrostreptomycin.

Properties. Streptomycin does not reach the circulation when given by mouth not because it is destroyed like penicillin but because it is not absorbed. It remains active in the gut and can be given orally to achieve a local effect on the intestinal flora. For a systemic effect it must be given parenterally. Absorption after intramuscular injection is not quite so rapid as penicillin neither is excretion after a dose of 1 gm. A detectable amount can be found in the blood eight or more hours later. Streptomycin diffuses into the tissues from the bloodstream but does not reach the cerebrospinal fluid or the interior of the eye in any significant concentration; it is excreted in the urine where very high concentrations are attained.

The range of the antibacterial activity of streptomycin is wide in addition to the species sensitive to penicillin the gram-negative intestinal organisms and the tubercle bacillus are susceptible to its action. There is, however, considerable variation in the resistance of individual members of most species. Streptomycin is strongly bactericidal and differs from penicillin in that the rate of killing increases progressively with the concentration. At concentrations such as those obtainable in the urine killing is extremely rapid—a matter of minutes in in vitro conditions—but streptomycin suffers from the grave disadvantage that bacteria which survive contact with it are extremely liable to become resistant. Such a high degree of resistance as to make further treatment useless may for instance develop amongst coliform organisms within twenty-four hours of the start of treatment. For tubercle bacilli which multiply more slowly than the majority of bacteria the time needed for the
development of resistance is fortunately longer, probably at least six weeks.

From these considerations it would appear desirable during therapy to obtain the highest possible concentrations of streptomycin in the tissues in order to rid the body of infection before resistance develops. In practice these concentrations are limited by the very considerable toxicity of this drug, in fact streptomycin therapy may be said to be governed by two factors, the risks of toxicity and of development of bacterial resistance.

Toxicity

Eighth nerve damage is the most common and important toxic manifestation of streptomycin, the earliest symptoms are vertigo and incoordination. Deafness may occur in severe cases. These effects may be permanent but there is generally some recovery, particularly when the amount of damage has been slight. Eighth nerve damage never occurs after the short courses of treatment of five to ten days duration which are used for acute infections, though the daily dose may be as high as 4 gm, but during long continued treatment its frequency and severity are directly proportional to the size of the daily dose; if this is less than 20 mg per kg body weight (1 gm for an adult) permanent damage is unlikely to occur. Intrathecal injections are particularly prone to give rise to toxicity. Dihydrostreptomycin was introduced in the hope that its eighth nerve toxicity would be less but this has not been realized in practice. Streptomycin is also more liable to give rise to allergic reactions than penicillin; several cases of exfoliative dermatitis have occurred. It is important to remember that toxic effects are particularly likely in patients with impaired renal function.

Administration

The development of resistance during treatment probably results from the selection of bacterial mutants. It has been repeatedly shown by both in vitro and in vivo experiments that resistant mutants are much less likely to arise if two or more drugs to which the organism is susceptible are given simultaneously. Since this risk is particularly great with streptomycin there are probably few occasions when this drug should be given alone. In the short term treatment of acute infections particularly in urinary infections with gram negative bacilli the sulphonamides provide a very satisfactory adjuvant. Streptomycin being usually given in six hourly or twelve hourly doses of 0.5 to 1 gm. In tuberculosis the daily dose now rarely exceeds 1 gm. Medical Research Council (1952) trials have shown that in pulmonary tuberculosis the development of resistance is delayed and clinical results are better when streptomycin is given.
with PAS than when either drug is given alone. The results suggest that 5 gm given orally four times a day is a satisfactory dosage of PAS. Further trials (MRC 1953) have shown that streptomycin plus isoniazid (100 mg orally, twice a day) was quite as effective as streptomycin plus PAS in preventing the emergence of strains resistant to streptomycin. Long term results are needed before the final assessment of these various combinations of drugs can be made. Although most of this evidence has so far been obtained from pulmonary tuberculosis it is most probable that the general conclusions are applicable to genito-urinary and other forms of tuberculosis.

THE "BROAD-SPECTRUM" ANTIBIOTICS

The three antibiotics, chloramphenicol, aureomycin and terramycin are for convenience considered together because they have a very similar range of antibacterial activity, are all well absorbed after ingestion and have all been available long enough to have established an important place in therapeutics.

It should be noted that aureomycin and terramycin are closely related chemically, a fact indicated by their official names chlorotetracycline and oxytetracycline respectively.

General Properties All three drugs remain potent for long periods in the dry state, but whilst in solutions chloramphenicol (Chloromycetin) and terramycin are relatively stable, aureomycin rapidly loses its activity. Chloramphenicol is very insoluble in aqueous conditions but readily soluble in propylene glycol in which vehicle it has been administered locally to aural and wound infections.

Owing to their extreme bitterness chloramphenicol and aureomycin are given by mouth in capsules or to children, in suitably flavoured elixirs. Terramycin is usually given in sugar-coated tablets. All are rapidly absorbed from the alimentary tract. After a single dose of average size significant amounts are found in the blood within two hours, the peak being attained after three to four hours in the case of chloramphenicol and between four and six hours in the case of aureomycin and terramycin. Higher blood concentrations can be obtained with chloramphenicol than with either of the other two drugs but as chloramphenicol is rapidly metabolized to an inactive nitro compound after six hours the concentrations are lower than those present after similar doses of aureomycin and terramycin. Bacteriostatic levels, however, usually persist for twenty-four hours after a single dose of 1 gm. These drugs are all rapidly excreted in the urine, where very high concentrations are
found, though the bulk of the chloramphenicol is inactive, sufficient of the active form is excreted to give good therapeutic results. Owing to the combination of rapid absorption with rapid inactivation, little active chloramphenicol is found in the large gut. Both aureomycin and terramycin, on the other hand, exert a very profound effect on the intestinal flora.

Dosage In the case of all three antibiotics satisfactory blood concentrations can be maintained with six hourly and generally with eight hourly doses. Dosage with chloramphenicol is usually calculated on the basis of 50 mg per kg of body weight per diem; the dose being reduced by one half when clinical improvement takes place. The daily dose of aureomycin and terramycin varies from 1 to 3 and 1 to 5 gm respectively, 2 gm being satisfactory in most cases. Preparations of these drugs suitable for intravenous injection can be obtained for patients unable to swallow but treatment must be continued orally as soon as possible since the risk of phlebitis is not unconsiderable. A very large range of preparations including even tooth pastes is available for local application.

Toxicity The commonest complications of treatment with these antibiotics are gastro intestinal, nausea, vomiting and epigastric discomfort are frequent; they are usually mild but may be so severe as to stop treatment. These symptoms are more often caused by aureomycin than by chloramphenicol or terramycin. Diarrhoea which is in the same way commoner with aureomycin, being associated with the very marked reduction in the intestinal flora may be accompanied by a distressing pruritus ani. The incidence of sore mouths and black tongues is almost certainly related to disturbances in the normal oral flora rather than to vitamin deficiencies though these may occur after prolonged therapy. The not infrequent association of moniliasis—and rarely, aspergillosis—with antibiotic therapy is also probably due to the same cause so is the rare but frequently fatal enteritis associated with resistant staphylococci.

A very much more serious form of toxicity is the depression of bone marrow function that has been reported after the use of chloramphenicol. Substances having in their chemical structures a benzene ring with attached amino or nitro group are known to be liable to affect the bone marrow. Chloramphenicol has this type of structure. Until more information is available as to the incidence of this complication there seems no need to discard a very useful therapeutic agent but when the drug is used a watch should be kept for the early symptoms of marrow damage, particularly during long continued or repeated treatments.
Antibacterial Activity All three have what is commonly referred to as a broad antibacterial spectrum that is to say their range of activity includes not only the gram positive bacteria and gram negative cocci generally susceptible to penicillin but many of the gram negative bacteria, the rickettsiae and some viruses. Individual species and strains within the species may vary considerably in their susceptibility to one or other of these drugs. In general the gram negative intestinal organisms are more susceptible to chloramphenicol than to aureomycin or terramycin, chloramphenicol being the one drug of proved efficacy in enteric fever. Aureomycin and terramycin, on the other hand, are more active against the strepto cocci. In the treatment of undulant fever aureomycin has been found superior, particularly, when combined with streptomycin.

Two species of gram negative intestinal bacteria of particular importance to the surgeon, Proteus vulgaris and Pseudomonas pyocyanea, exhibit exceptional resistance to all three antibiotics in spite of many statements to the contrary. Individual strains vary.

TABLE I—Comparative Susceptibility of Some Common Infections to Different Therapeutic Agents

<table>
<thead>
<tr>
<th>Infection by</th>
<th>Drug</th>
<th>Sulphonamide</th>
<th>Penicillin</th>
<th>Streptomycin</th>
<th>Chloramphenicol</th>
<th>Aureomycin</th>
<th>Terramycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strep. pyogenes</td>
<td></td>
<td>(3)</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Strep. pneumoniae</td>
<td></td>
<td>(2)</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Strep. faecalis</td>
<td></td>
<td>(2)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Strep. pyogenes</td>
<td></td>
<td>(2)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>-Staph. aureus</td>
<td></td>
<td>(4)</td>
<td>(1)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>V. gonorrhoea</td>
<td></td>
<td>(4)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N. meningitidis</td>
<td></td>
<td>(2)</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Salm. typhi</td>
<td></td>
<td>(2)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Bact. coli (in urine)</td>
<td></td>
<td>(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Homophilus influenzae</td>
<td></td>
<td>(1)</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td></td>
<td>(2)</td>
<td>3</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>Ps. pyocyanea</td>
<td></td>
<td>(2)</td>
<td>0</td>
<td>(3)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td>(3)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Actinomyces israeli</td>
<td></td>
<td>(2)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>B. anthracis</td>
<td></td>
<td>(3)</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

0 = greatest therapeutic efficacy
4 3 2 = descending degrees of susceptibility
1 = little or no therapeutic effect though causal organism sensitive to some extent in vivo
0 = organism insensitive to all and resistant
() = some infections are inceptible because the infecting strain is initially resistant

Highly susceptible to polymyxins B and E
very greatly a number are susceptible to chloramphenicol but
only a few to aureomycin or terramycin. *P. pyocyanea* is highly
sensitive to the polymyxins. Successful results have been obtained
in both prophylaxis and treatment of human infections by local
and by systemic use of polymyxins B and I, A and D are too toxic
for systemic administration.

Aureomycin differs from chloramphenicol and terramycin in that
its action is purely bacteriostatic; chloramphenicol is actively
bactericidal; the action of terramycin being intermediate. Terra-
mycin in its range of activity very closely resembles aureomycin.

References

Sulphonamides

Hawkin J and Laurence J Stewart 1949 The Sulphonamides
London
Medical Research Council War Memorandum No 10 1943 The Medical
Use of Sulphonamides Revised Edition

Penicillin

(Cathcart A B and MacAlpine J C W 1953 Brit med J 1 80)
Fletcher A P and Knappett C R 1950 Brit med J 1 188
Florey H M E 1952 The Clinical Application of Antibiotics
London
Griffiths F Jones P F shooter R A and Head J A 1949
Brit med J 11 958
Griffiths F Walker A J and Shooter R A 1950 Brit med J 1 761

Streptomycin—General

Garrod L P 1950 Brit med J 1 669
Waksman S A 1949 Streptomycin Nature and Practical Applica-
tions Baltimore and London

Streptomycin in Relation to Tuberculosis

Daniels M A and Hill A Bradford 1952 Brit med J 1 1162
Medical Research Council 1952 Brit med J 1 1157
Medical Research Council 1953 Brit med J 11 217

Chloramphenicol, Aureomycin and Terramycin

Long P H Bliss F A Schendbach E B Chandler C A and Bray
M S 1950 Lancet 11139
Welch H and Lewis C H 1951 Antibiotic Therapy London
Wilson L E Harris M S Henstell H H Wetherbee O O and
Kahn J 1952 J Amer med Ass 149 231

Polymyxin

Jackson D M Lowbury F S I and Topley I 1951 Lancet 1 137
Pulaski J J Baker H J Rosenburg M I and Connolly J F 1949
J Clin Invest 28 1028
Swift P N and Bushby S R M 1953 Lancet 1 110
CHAPTER III

ANÆSTHESIA

T. CECIL GRAY

Introduction

The introduction of curare to anaesthesia in 1942 has been followed by the development of many synthetic substitutes and the evolution of new anaesthetic techniques which because of their low toll in terms of post operative morbidity and the ideal surgical conditions which they afford have played a very significant part in the advance of surgery during recent years.

Control of the respiratory activity of the patient is no new development but recently anaesthetists have sought and achieved some control of the circulation of their patients in order to reduce bleeding and also to facilitate surgery of the heart and great vessels.

These two advances form the subject of this chapter.

THE RELAXANT AGENTS

Curare was first used in 1912 by Laewen of Leipzig but the respiratory depression which it caused delayed the development of its use in clinical medicine for more than thirty years. In 1942 Griffith and Johnson of the Homeopathic Hospital Montreal having witnessed Bennett administering Intocostrin a purified extract of curare in order to modify convulsive therapy used the same extract to obtain muscular relaxation in general surgery. In this country King in 1935 had succeeded in abstracting a pure alkaloid—d-tubocurarine chloride—from crude curare and Gray and Halton (1946) reviewed the use of this alkaloid during anaesthesia in over 1,000 cases. This was only the beginning of interest in the development of drugs which provide relaxation without having detrimental side effects. Chemists, pharmacologists and anaesthetists have all participated in the search for satisfactory substitutes for the arrow poisons and the result has been the appearance of a series of synthetic drugs which vary in the manner in which they act and in the effectiveness and duration of the relaxation which they provide. These drugs—the relaxants—have, as will be seen radically altered the whole conception of anaesthesia.
With the exception of mephensin which has not fulfilled its early promise the drugs used in anaesthesia to produce paralysis all exert their effects at the neuromuscular junction and may be divided into those acting by (A) competitive inhibition and (B) depolarization.

Competitive Inhibition

On arrival of a motor nerve impulse to a striated muscle fibre at the end plate region acetylcholine is released. The acetylcholine before being hydrolysed by cholinesterase is believed to alter the polarization of the region and thus produce a transient potential difference between it and the surrounding area, which excites the muscle fibre and causes it to contract. d Tubocurarine chloride and substances acting in a like manner are presumed to occupy the acetylcholine receptors on the limiting membrane of the motor end plate and thereby prevent the depolarizing activity of the acetylcholine. These agents may be regarded as exerting their action by competing with the acetylcholine for the receptors. It is clear that anything which tends to increase the concentration of the acetylcholine in the region of the end plate will reinforce its ability to compete for the receptors and therefore tend to antagonize this type of curarizing agent. Neostigmine and other anticholinesterase drugs by inhibiting the breakdown of acetylcholine, have just this effect.

d Tubocurarine chloride its dimethyl ether and gallamine triethiodide act by competitive inhibition and are in constant clinical usage.

d Tubocurarine Chloride is the active principle of tube curaro and was isolated in crystalline form by King in 1935 and is now prepared by extraction from a single plant source—the Chondrodendron Tomentosum. It is a quaternary alkaloid and in chemical constitution it is a bisbenzyl isoquinoline derivative having the following structural formula:

\[
\begin{align*}
\text{Pharmacology} & \quad \text{Its main effect is to produce paralysis of striated}
\end{align*}
\]
voluntary muscles. It has no effect on the cardiovascular system or the parenchymatous organs, but it has two side actions which are of importance.

(a) Ganglion blocking activity. In large doses \textit{d} tubocurarine chloride blocks the transmission of impulses through the autonomic ganglia—affecting the sympathetic ganglia more than the parasympathetic. Thus it is of no significance clinically for very large doses are required for it to be evidenced by even transient falls in blood pressure. It may, however, explain the slow pulse commonly observed in anaesthesia when \textit{d} tubocurarine is used and the apparent rarity of circulatory reactions to traumatic stimuli even in light anaesthesia.

(b) Histamine production. When \textit{d} tubocurarine chloride is perfused through voluntary muscle it liberates histamine (Gregory and Schild 1947) and injected intradermally it produces a typical wheal. Clinicians have always feared that the histamine thus released might cause severe bronchospasm in human patients. Although this complication has been observed experimentally in animals (West 1938) and in humans during treatment of tetanus (West 1936) and during anaesthesia (Whitacre and Fisher 1945) it is to-day a rare complication thanks to increasing experience in its use and also to the great purity of drugs which are available.

Dosage. The usual initial dosage of \textit{d} tubocurarine chloride is 2 mg. per stone (6.3 kg.) body weight. After intravenous injection its effects are apparent in one to one and a half minutes and last at maximum intensity for twenty-five to thirty minutes. It is advisable to give a small test dose initially of one third of the induction dose; this will reveal both undue resistance and sensitivity, which undoubtedly occur.

Indications and Contraindications. The chief anaesthetic indications for the use of \textit{d} tubocurarine chloride are to provide relaxation and control of the respiration during abdominal and thoracic surgery.

Its use is absolutely contraindicated in patients suffering from myasthenia gravis who show an extreme degree of sensitivity to this type of relaxant agent and in cases with respiratory obstruction.

Where relaxation is required only for the shortest periods drugs with a shorter duration of action such as gallamine triethiodide or suxamethonium are to be preferred.

Synthetic Substitutes for \textit{d} Tubocurarine Chloride. (a) Dimethyl Tubocurarine Bromide. This alkaloid prepared synthetically from \textit{d} tubocurarine chloride, is identical in its pharmacological actions. The duration of its paralysant effect is however shorter lasting.
twenty to twenty-five minutes and being twice as potent the dosage required is half that of \(d \) tubocurarine chloride.

(b) Gallamine Triethiodide (Flaxedil) The paralyzing action of gallamine resembles that due to \(d \) tubocurarine chloride but lasts for a shorter time (twenty minutes). It has autonomic ganglion blocking activity which differs from \(d \) tubocurarine chloride in that the parasympathetic ganglia are more affected than the sympathetic (Doughty and Wyke 1951). The vagal block with sympathetic predominance thus produced results in tachycardia which is always seen following its administration. It is less active than \(d \) tubocurarine chloride in stimulating histamine.

Dosage Eights to 100 mgm gallamine triethiodide is equivalent to 15 mgm \(d \) tubocurarine chloride. A test dose is advisable.

Indications and Contraindications These are similar to those for \(d \) tubocurarine chloride but it is more suitable for use when an effect of shorter duration is required. As it dilates the bronchi and is less active in histamine release it is especially indicated in asthmatics but is contraindicated in patients who have a poor myocardium or whom the tachycardia which follows its use will be an unnecessary strain.

(c) Laudolisin This new compound has a chemical structure similar to that of \(d \) tubocurarine chloride in that it is a bisbenzyl isoquinoline derivative but differs in that it is heterocyclic and has a decamethylene side chain. Its action is slower in onset than that of \(d \) tubocurarine chloride and the duration of its effect is considerably longer. It has no marked effect on the autonomic ganglia or the vagus and in histamine release activity it resembles \(d \) tubocurarine chloride. It is approximately half as potent as \(d \) tubocurarine chloride—2 mgm being equivalent to 1 mgm of the curare alkaloid. Its use is indicated only in patients requiring relaxation for a considerable length of time.

Depolarization

Certain substances depolarize the end plate region of the myoneural junction. If the depolarization which they produce is lasting acetylcholine appearing in response to a motor nerve stimulus will no longer produce a transient potential difference and a myoneural block will be present. In this case anticholinesterase agents, which increase the concentration of acetylcholine, will obviously not antagonize the block but will in fact tend to intensify it. The drugs which are used as relaxants in clinical practice and which act in this way are decamethonium and the two short acting substances suxamethonium (succinylcholine) and suxethonium. The mitral...
Depolarization caused by injections of these substances may cause muscular fibrillations and twitching. This is not usually evident when decamethonium is used but is marked after suxamethonium. In fowls spastic paralysis always follows injections of these drugs and this fact is used as a test for substances which act in this manner.

Decamethonium Iodide Decamethonium iodide has the following simple structural formula

\[
\text{I} \quad \text{N(CH}_3\text{)}_3 \quad \text{(CH}_2\text{)}_{10} \quad \text{N(CH}_3\text{)}_3 \quad \text{I}
\]

Its use in anaesthetic practice was first reported by Organe (1949) and although received at first with considerable enthusiasm as a possible substitute for curare, it has been displaced by later products which have proved more generally reliable. Following its injection the distribution of the paralysis is clinically indistinguishable from that caused by \(d\) tubocurarine chloride. It has considerably less ganglion blocking activity than either \(d\) tubocurarine chloride or gallamine triethiodide and intradermal tests on man suggest that it has about half the histamine producing activity of \(d\) tubocurarine chloride.

The maximum effect of decamethonium iodide lasts about twenty minutes but there is a tendency after large dosage for its maximum effect to be followed by a less marked but longer persisting paralysis. Pentamethonium and hexamethonium bromide have been suggested as antidotes and do in fact partially reverse the paralysis but they are powerful ganglion blocking agents and produce as a consequence severe hypotension. Their antagonistic action is incomplete.

Dosage Initial dosage of decamethonium iodide is from 3 to 6 mgm given intravenously. The intramuscular route has been used but the onset of the paralysis is delayed and its duration is less controllable.

Indications and Contraindications Decamethonium does not as was at first hoped spare the respiration in doses which produce satisfactory relaxation. Furthermore, a deeper plane of anaesthesia is generally required than that commonly employed with other relaxants. It has no antidote. Decamethonium has probably now little or no place in routine anaesthesia as there are available other substances which are more reliable and to which there are satisfactory antidotes. It is however well tolerated by myasthenics and has a special field of usefulness in such patients but it should be noted that these patients may be hypersensitive to large doses due to a secondary block by competitive inhibition (Churchill Davidson and Richardson 1952)
Decamethonium is definitely unsuitable for use in cases of long duration and obviously for patients undergoing thoracic surgery, where controlled respiration for long periods will be required.

Suxamethonium (Scoline) The relaxant drugs so far described have comparable durations of action—twenty to forty minutes. It was found that esters of choline, notably the succinyl derivatives, caused depolarization block of very short duration (Bovet et al 1949 Buttle and Zarnis 1949) Two such compounds have been introduced into clinical practice namely the dimethyl (suxamethonium) and the diethyl (suxethonium) halide of the succinyl ester of choline, which have the following structural formulae:

\[
\begin{align*}
\text{CH}_3 & \quad \text{O} \quad \text{O} \quad \text{CH}_3 \\
\text{H}_2\text{CH}_3 & \quad \text{NCH}_2\text{CH}_2\text{OCCH}_2\text{CH} \quad \text{COCH}_2\text{CH} \quad \text{N} \quad \text{CH}_3\text{Ha} \\
\text{CH}_3 & \\
\text{Suxamethonium} \\
\text{CH}_3 & \quad \text{O} \quad \text{O} \quad \text{CH}_3 \\
\text{H}_2\text{CH}_3 & \quad \text{NCH}_2\text{CH} \quad \text{OCCH} \quad \text{CH}_2\text{COCH}_2\text{CH} \quad \text{N} \quad \text{CH}_3\text{Ha} \\
\text{C}_2\text{H}_5 & \\
\text{Suxethonium} \\
\text{Ha} & = \text{Halogen}
\end{align*}
\]

The two compounds resemble each other pharmacologically with the sole difference that the paralysis caused by the suxethonium compound is rather more rapid in onset and of slightly shorter duration.

Five to thirty seconds following intravenous injection of suxamethonium muscle twitching and spasms are seen followed after a further five to ten seconds by a complete flaccid paralysis of all the striated muscles. The muscles of respiration are affected, and in practice relaxation and respiratory arrest are almost simultaneous in onset and of similar duration. The paralysis following a normal dose of 50 mgm lasts for four to six minutes. Suxamethonium is hydrolysed by both the pseudo cholinesterase present in the plasma and to a lesser extent by true tissue cholinesterase succinic acid and choline being formed.

Cases of prolonged paralysis and respiratory arrest following suxamethonium have been described and there is considerable evidence which suggests that such patients have a reduced serum
pseudo cholinesterase concentration (Bourne et al. 1952, Evans et al. 1952). For this reason care should be taken when administering this substance to patients with liver disease or who are suffering from severe anaemia, cachexia, starvation or from poisoning with certain insecticides.

Suxamethonium has neither significant histamine production activity nor ganglion blocking effects.

Dosage The initial dosage of suxamethonium should be from 25 to 50 mgm. For more prolonged relaxation after the usual initial dose supplementary increments of 10 to 20 mgm may be given every third minute or when there are signs of returning respiratory activity, or an attempt may be made to maintain an even blood concentration by an intravenous infusion containing 1 to 2 mgm of suxamethonium per ml of physiological saline. A useful rate of infusion would be forty to sixty drops per minute (2 to 8 mgm).

Indications and Contraindications Suxamethonium is especially useful to facilitate endotracheal intubation prior to anaesthesia for neurosurgery, plastic surgery, ear, nose and throat surgery, or other surgical procedures in which relaxation is not necessary. It has also completely changed the picture of the anaesthesia for endoscopies as has been illustrated by a recent review of over 1,000 cases of bronchoscopy and oesophagoscopy (Butt 1952). In orthopaedic clinics it will be found a useful accessory to anaesthesia for reduction of fractures, dislocations and mobilization of joints etc. Its employment in cases of longer duration either by intermittent injection or continuous infusion is still in the experimental stage and although there have been encouraging reports it is probable that the longer acting agents will be more generally preferred for this purpose.

Treatment of Respiratory Depression when Relaxant Agents have been Employed

✓ The relaxant agents paralyse the muscles of respiration ✓ The absence of spontaneous respiration during operative procedures holds no terrors for the modern anaesthetist. In fact it is often desirable and a necessary part of the anaesthesia. ✓ However normal and adequate respiration may be slow to reappear at the end of the operation and this may be due to misjudgment by the anaesthetist or occasionally to hypersensitivity to the drugs which have been used. Whatever may be the cause the first treatment of such a condition must always be artificial respiration by inflation of the lungs with oxygen. A decision must then be made as to the cause of the depression remembering that it may be due to hyperventila
tion with consequent apnoea or to central depression, as well as
to residual activity of the paralyzing drugs.

There are no clinically useful antidotes to the drugs acting by
depolarization and, if the respiratory depression is due to these
treatment must be by continuing artificial respiration until full and
complete respiration has returned. In the treatment of such condi-
tions a Drinker apparatus may be found extremely useful.

Since the work of Pal (1900) it has been known that the anti-
cholinesterase drugs were powerful antidotes against the curare
alkaloids. They are, in fact, effective against all the drugs acting
by competitive inhibition. Neostigmine is twice as effective as
physostigmine in this respect and exerts its antagonistic effect
probably by a direct anti-curare action as well as by its anti-
cholinesterase activity. Because of the latter it has marked
muscarnic effects and when neostigmine is used as an antidote it
must always be preceded by a dose of atropine, otherwise brady-
cardia perhaps even cardiac arrest, intestinal overactivity and
salivation are likely to result. It is common practice to give a
dose of atropine 1/100 to 1/50 gram (0.05 to 1.3 mgm) intravenously
and after two minutes to follow this with a dose, in an adult, of
2.5 to 5 mgm of neostigmine. The neostigmine should be admini-
stered only when there is some spontaneous respiratory activity, as
only then can the patient’s response to the antidote be assessed.
In the absence of such indication there may be a tendency to give
repeated doses of neostigmine and overdose of this substance may
itself produce paralysis of voluntary muscles. If cyclopropane
which has itself parasympathetomimetic properties has been the
anesthetic used or the patient has a tendency to vagal over-
activity which may be manifested by the history of asthma or
vasovagal syncope, the neostigmine should be carefully given in
divided doses.

Effect of Relaxant Agents on Anaesthetic Practice

The relaxants have revolutionized anesthetic technique in that
they have removed the necessity for the deeper planes of anesthesia.
During deep anesthesia there is a significant impairment of circula-
tory control because of depression of the vasomotor centres and
compensatory reflexes. The result of this is that the patient has lost
the power to compensate for blood loss and for changes in position
and temperature. Moreover, after deep anesthesia there will be a
prolonged period of recovery during which respiratory activity may
be minimal, the cough reflex depressed and the danger of respira-
tory obstruction and aspiration of vomitus ever present. Anyone used
to these conditions who visited a modern surgical unit could not fail to be impressed by the contrast presented after operation by the present day patient who within a few minutes of the end of the operation is conscious and co-operative and has unimpaired respiratory and compensatory vasomotor reflexes.

Hazards

These may be divided into the dangers which are entailed in the light plane of anaesthesia commonly used-those associated with the paralysis of the respiratory musculature which these drugs produce and those associated with relaxation of the oesophageal musculature.

Dangers of Light Anaesthesia. There have been reports in the literature of patients becoming aware of their surroundings during operations and other instances have occurred which have not been recorded. This mishap is not made more excusable by the fact that such patients have usually exhibited a marked degree of analgesia and euphoria. Insufficient care and attention to the obvious premonitory signs such as movement of a limb, a rising pulse rate or changes in the blood pressure which give ample warning of too light an anaesthesia are unforgivable. It has been found that using the relevant agents which are at present available the degree of paralysis to which a patient is submitted will not be sufficient to prevent him responding to painful stimuli. Even though his respiratory musculature may be completely paralysed experience has demonstrated that such patients are still able to respond by movement of a limb to a painful stimulus. The picture of a patient conscious in agony and compulsorily immobile is one which need exist only in the imagination.

Stimulation of the autonomic reflex in the abdomen or thorax during inadequate anaesthesia may produce circulatory disturbances. The collapse which follows such stimulation resembles in its effects on the heart rate blood pressure cardiac output and peripheral blood flow a vasovagal syncope. During light anaesthesia such collapse is reversible in that when the stimulation ceases the patient's vasomotor tone recovers. This recovery is in marked contrast to the irreversible collapse of similar etiology which may be seen during deep anaesthesia. Light anaesthesia need not be accompanied by reactions of this type if adequate protection of the patient is provided by analgesia. Usually the inhalation of adequate concentrations of nitrous oxide and oxygen are sufficient but during abdominal procedures where there is likely to be considerable stimulation of the deep autonomic reflexes it is advisable to reinforce...
the anaesthetics, by the administration of more potent drugs, such as
pentothal

Dangers of Respiratory Depression Because of the oxygen rich
mixtures which the patient is likely to be receiving under modern
anaesthetic conditions, the respiratory depression is not likely to
result in anoxaemia but there may be a deficient elimination of
carbon dioxide. The resulting carboxaemia will be manifested by a
rise in blood pressure and capillary oozing. Moreover, the respira-
tory centre will be stimulated and any spontaneous respiratory
activity which is present will be exaggerated and become bumpy
and jerky giving rise to a degree of abdominal turbulence little
better than the tight abdomen of old. The anaesthetist must there-
fore perforce assist the respiration by squeezing the reservoir
bag of the anaesthetic machine. For many years control of the
respiration has been utilized by anaesthetists to permit intrathoracic
operations and in the course of time in consequence of the frequent
respiratory depression following the use of relaxant drugs, it has
become more common to view with equanimity the abolition of
spontaneous respiration and substitute for it artificial ventilation
of the lungs, even in conditions which do not strictly require such
fully controlled respiration. It has been suggested (Gray and Rees,
1952) that the apnoeic state with controlled respiration is desirable
during major surgery on the abdomen as well as on the thorax,
because it results in a reduction in the dose which must be given to
the patient both of relaxant and of narcotic drug (Dundee
1952).

Because of the loss of tone in the intercostal muscles and
diaphragm after dosage with relaxant agents there is a diminution
in the size of the thoracic cavity. This predisposes to under
ventilation of the peripheral areas of the lung during the operation
and in the recovery period. During the operative procedure this is
dealt with by the assisted respiration which has already been
described but the return of the patient to the ward with any residual
paralysis is for this reason very likely to be followed by post-
operative atelectasis. After administration of the longer acting
agents such as d-tubocurarine chloride, it is unlikely that there will
be complete recovery at the end of the operative procedure. At is
therefore advocated by many that neostigmine preceded of course
by atropine should be injected as a routine before the patient
returns to the ward. It is true that with deeper anaesthesia smaller
doses of relaxants may be used and there is consequently, less
frequently a necessity for the administration of antidotes under
such circumstances. However, all the advantages of light anaesthesia
are lost and the maximum benefit is not being gained from the use of relaxant agents.

Dangers due to Relaxation of the Oesophageal Musculature

Relaxation of the oesophageal musculature after relaxant agents predisposes to regurgitation of stomach contents during the induction of anaesthesia a danger obviously more imminent in cases of intestinal obstruction or other abdominal emergencies. It is imperative that this latter type of case should be treated along orthodox lines have the stomach emptied and if necessary, washed out through a wide bore tube prior to the induction of anaesthesia. Even in conditions where there is no intestinal obstruction an insidious reflux of gastric contents up the oesophagus may occur. For this reason endotracheal intubation with a cuffed tube is advisable as a routine after the administration of relaxant agents. This not only prevents aspiration of stomach contents but also ensures the perfect airway which is an absolute necessity of such an anaesthetic technique. Moreover inflation of the stomach and intestines which may otherwise occur during controlled respiration is avoided.

THE CONTROL OF BLEEDING DURING OPERATION

Hypotensive Anaesthesia

The introduction of intravenous barbiturates cyclopropane and relaxant agents satisfied the surgeon's demands for speedy and efficient preparation of his patient for operation. It soon became apparent however that these techniques gave rise to complaint on a new score - increased bleeding. The failure of anaesthetists to appreciate the necessity for assisting a depressed respiration and thereby ensure adequate elimination of carbon dioxide, was probably the real cause of this new complaint. That as it may there are some surgical techniques especially in the plastic otolaryngological and neuro-surgical fields which are seriously handicapped by bleeding.

An attempt to overcome this difficulty was made by Gardner in 1946 and Hale in 1947 (Hale 1948) who artificially lowered the blood pressure during neurosurgical procedures by arteriotomy withdrawal and subsequent replacement of the patient's blood.

In 1948 Griffiths and Gilhes of Edinburgh reported on high spinal anaesthesia for thoraco-lumbar splanchnieectomy and sympathectomy. The elimination of the sympathetic vasoconstrictor impulses together with the jack knife position adopted for the operation produced a dramatic fall of systolic pressure - no pressure being recordable in the brachial artery - and in conse
quence a completely ischaemic field of operation. These workers also offered an explanation to account for the absence of serious sequelae to such degrees of hypotension. They suggested that the head of pressure necessary to drive blood through the capillary bed and ensure full oxygenation of the tissues was in fact only 30 mm of mercury when the arteriolar resistance was reduced by vasodilatation.

Armstrong, Division and Underby suggested in 1950 the use of ganglion blocking agents to produce hypotension during operation. This made the technique easy and since then the indications for hypotensive anaesthesia have been extended to cover not only cases in which bleeding is a definite nuisance to the surgeon but also those cases in which blood loss is likely to be considerable if the blood pressure is maintained thereby reducing the need for transfusion of donor blood with all its attendant hazards.

Techniques

Bleeding and oozing in a wound can be reduced to a minimum by the anaesthetist ensuring a clear and adequate airway, full oxygenation and the adequate elimination of carbon dioxide. If necessary the surgeon can render the wound more ischaemic by

![Diagram of apparatus for arteriotomy after Hale (1948)](image)

Fig 2 Apparatus for arteriotomy after Hale (1948)
(a) Manometer
(b) Flask for return to patient of blood under pressure
(c) Flask containing 0.01 per cent heparin solution
(d) Flask to receive withdrawn blood
using a local anaesthetic containing a vasoconstrictor. It is obvious that an ischaemic field can also be produced by the use of deep anaesthesia, but this type of hypotension and slowing of the circulation, due to depression of the vasomotor centres and myocardium, can hardly be justified.

There are three principal methods in current use to achieve artificial hypotension during operation.

Arteriotomy. This method has the advantage that the blood pressure can be controlled at will. Briefly, the procedure is to bleed the patient from an artery, usually the radial, into bottles containing an anticoagulant, until the blood pressure is stabilized at a suitably low level. The blood is subsequently returned by the same route. Fig. 2 shows the apparatus used by Hale (1948) for this purpose. Up to 3 litres of blood may be removed, the aim being to keep the systolic pressure in the region of 80 mm. of mercury and to regulate it according to surgical requirements and the patient’s reaction.

An important objection to this procedure is that the loss of blood is compensated for by vasoconstriction and this, combined with the loss of blood volume and the hypotension, is likely to lead to tissue anoxia.

Total Sympathetic Block by the Intrathecal Injection of Local Anaesthetics. Sarnoff and Arwood (1946) have shown that paralysis of the sympathetic nerve fibres can be produced by concentrations of local anaesthetic (0.2 per cent procaine) far below those required to produce sensory or motor block (1.5 to 2.0 per cent procaine). Griffiths and Gillespie made use of this by permitting a spinal anaesthetic to spread upwards in such a way that in the upper dorsal region only the sympathetic fibres were affected whilst the analgesia was sufficient to cover the operative field. Light narcosis was maintained with thiopentone and full oxygenation by allowing the patient to respire oxygen with necessary assistance of the respiration. Gillespie appreciated the part played by posture in allowing pooling of the blood in dependent parts but insisted on the patient being maintained in the head down position in order to ensure adequate cerebral blood flow and oxygenation (Gillespie 1951). During the period of hypotension the capillary circulation in the skin is usually good and the patient appears pink and dry. The heart rate is usually slow, between forty and fifty beats per minute. The duration of hypotension depends on the type of local anaesthetic used, post operatively, the head must be kept lowered until the blood pressure has returned to normal usually a period of two to three hours.
The advantages claimed for this technique are (a) the full dilatation of the arterioles ensures an adequate blood flow to the tissue capillaries despite a lowered systolic pressure, (b) the hypotension is predictable and certain, and (c) the analgesia and relaxation provided by a spinal anaesthetic are optimal.

The disadvantages particular to this method are all implied in the hazards of a spinal anaesthetic.

Ganglionic Blockade by Drugs which Interfere with the Transmission of Impulses through the Autonomic Ganglia While decamethonium iodide (C₁₀) produces neuromuscular block, the lower penta and hexa homologues block transmission through autonomic ganglia, and thereby cause sympathetic paralysis, vasodilatation and hypotension. Armstrong (1950) reported on the use of pentaethonium bromide to reduce bleeding during anaesthesia, and further series of cases were published by Enderby (1950, 1951).

As with high spinal block, two factors play a part in the production of hypotension by these agents:

1. The creation of a state of vasodilatation by sympathetic block.
2. The pooling by posture of a significant fraction of the patient's circulating blood and its storage in parts of the body distal to the site of operation.

This pooling and storage of blood in dependent parts of the body may well be assisted by a relaxation of veno-motor tone (Paton, 1951) and amounts to and has been termed an "internal phlebotomy." The method entails therefore a loss of circulating blood volume accompanied by vasodilatation—a condition of affairs greatly different from that existing after arteriotomy, in which the loss of blood volume is accompanied by vasoconstriction.

The technique is as follows. After the usual premedication anaesthesia is induced with an intravenous barbiturate, a muscle relaxant, if required and maintained with nitrous oxide and oxygen, with the addition of analgesic doses either of volatile anaesthetic agents or intravenous pethidine. When the anaesthesia is stabilized the patient is placed on the operating table and a posture assumed which is suitable for the operation, and which will allow the blood to gravitate to dependent parts of the body. A review of the various positions which may be adopted has been given by Enderby (1951). A dose of pentamethonium (20 to 30 mgm) or of hexamethonium (20 to 50 mgm) is administered and the effects observed. Older patients will require the smaller dosage. Increments of the drug are given until the required degree of hypotension is attained. Up to 150 to 200 mgm may be required. The aim should be to
maintain the systolic blood pressure in the region of 70 mm of mercury. If the hypotension becomes too extreme this can be rectified by altering the posture of the patient and if necessary by the intravenous injection of small doses of a vasoconstrictor agent such as Mepedrine. Throughout the operation full oxygenation of the patient must be ensured by maintaining a high percentage of oxygen in the anaesthetic mixture being respired by ensuring a free and adequate airway and when necessary by assisting the respiration.

While this technique has obvious advantages over either arteriotomy or total spinal anaesthesia it has disadvantages. The methoind compounds are most certain in their effects in hypertensive and elderly patients whom many would consider unsuitable subjects for this procedure. The younger and healthier the individual the less these drugs can be relied upon to achieve the necessary degree of hypotension unless a fairly deep plane of anaesthesia accompanies their administration. A further disadvantage arises from the necessity to posture patients. It is not always convenient for the site of operation to be raised above other parts of the body and the necessity for a head up tilt in operations on the head, neck and upper parts of the body carries with it the danger of an impaired cerebral circulation.

Precautions to be taken by the Surgeon during Hypotensive Anaesthesia

In order to avoid reactionary haemorrhage it is important that any bleeding point which is observed no matter how little blood oozes therefrom should be haemostatically sealed. Clotting and retraction will prevent bleeding from the smaller vessels post operatively if the blood pressure is only permitted to recover slowly. For this reason any rapid restoration to normal of the blood pressure, such as might follow the injection of a dose of vasoconstrictor agent or a sudden change in position of the patient is contraindicated. Any bleeding that does occur due either to severance of a large blood vessel or due to bleeding following an inadequate degree of hypotension is likely to have more serious consequences when the vasomotor responses are abolished. It is of the greatest importance that blood should be replaced adequately and quickly under these circumstances. For this reason also the production of hypotension in a patient who is already bleeding is extremely dangerous.

Discussion of the Hypotensive State

There can be no gainsaying that a surgeon's task is greatly facilitated by an ischaemic field of operation and few will argue
against the principle that a pint of the patient's own blood is to be preferred to two pints out of a bottle. A condition of lowered blood pressure however no matter how controlled obviously entails a radical alteration in the patient's circulatory dynamics.

It is generally agreed that in the presence of a significant degree of arteriosclerosis or atheroma conditions which will further reduce blood flow the use of this technique is absolutely contraindicated.

Only a beginning has been made to the investigation of patients with hypotension and it is probably true to say that none of the work which has yet been produced is sufficiently final or authoritative to justify any definite conclusions in regard to the safety of this procedure. The following is a very brief review of the important research work which has been undertaken to shed light on the effects on various systems and organs of lowering the blood pressure.

Effect on Heart Shackman et al. (1952) have estimated the cardiac output and studied the peripheral blood flow in patients during hypotensive anaesthesia. They found that in all cases the cardiac output was materially reduced sometimes to a profound degree. The degree of reduction in cardiac output bore no relation to the blood pressure an important and perhaps disturbing point. They considered that this diminution in output was due to the pooling of blood on the venous side of the circulation. They point out that with a reduced cardiac output without compensatory constriction of the renal vessels or the vessels of the skin and muscles, which in fact do not occur in anaesthetized patients after methonium compounds there is a serious danger of a considerable reduction in blood flow through the coronary and cerebral vessels and through the liver. Slight electrocardiographic changes which might indicate coronary insufficiency have in fact been reported (Armstrong Davis 1950).

Effect on Kidneys and Liver Evans and Enderby (1952) compare the incidence of proteinuria and the appearance of red cells and casts in the urine in a series of fifty patients who were anaesthetized without hypotension with that in a similar series receiving the same type of anaesthesia but with hexamethonium and a hypotension of 65 to 80 mm of mercury. Although there was a slightly higher incidence in the latter series, the difference between the two was not statistically significant. However, using theulin clearance and p-amino hippurate clearance test Miles et al. (1972) found a considerable fall in renal blood flow and glomerular filtration rate during anaesthesia but an insignificant change when hypotension induced by pentamethonium was superimposed. Both these observers and Evans and Enderby (1952) stress the fact that the patients employed
were presumed to have normal arteries and kidneys and that different results might be expected in diseased conditions. An important point for anaesthetists to remember is that these compounds are excreted by the kidneys and that impairment of renal circulation is likely to delay their excretion and thus prolong their action.

Using macroscopic changes as an indication of liver hypoxia, Bromage (1952) observed that in fourteen out of seventeen patients submitted to anaesthesia and hypotension the colour and consistency of the liver suggested hypoxia. When the systolic pressure was between 45 and 60 mm of mercury the liver appeared cyanosed and turgid and rubbery. The organ quickly became pink and of normal consistence when the pressure was restored by injection of a vasoconstrictor agent.

Effect on Cerebral Blood Flow The estimation of cerebral blood flow is beset with difficulties but in several centres research is being conducted to elucidate the state of the cerebral circulation during hypotensive anaesthesia. The estimation of oxygen differences in cerebral venous blood (Saunders 1952) is an inaccurate estimation of cerebral blood flow and as has been pointed out by Hughes (1951) actual total cerebral blood flow must be estimated before any real conclusions may be drawn. Nilsson (1953) has ingeniously applied the flicker fusion test of cerebral damage to estimate cerebral anoxic changes after hypotensive anaesthesia and his preliminary results have been suggestive that damage does occur—but these results were uncontrolled and therefore by no means definitive.

Finally, all are agreed that the danger of ischaemic anoxia of important organs is very much greater if the blood pressure is allowed to fall below 70 mm of mercury.

Side Effects of Methemum Compounds There are certain side effects of the methemum compounds not directly related to the hypotension. Loss of accommodation due to paralysis of the ciliary muscle is a common but not important sequela of their administration. In conscious subjects when given for the treatment of hypertension their effect at the vagal ganglia may be evidenced by nausea, abdominal distension, constipation and occasionally paralytic ileus and an unusual incidence of the latter complication has been reported after anaesthesia in which these drugs are used.

Summary Accidents have occurred when this technique has been used and they can be attributed to one of three causes: (a) inexperience in the use of the technique; (b) its use in unsuit
able cases—an ever increasing group (e) a definite morbidity and mortality associated with hypotension or the drugs used

Indications and Contraindications for the Use of Hypotensive Anaesthesia

In view of the little authoritative work which has yet appeared on the hypotensive state caution must be exercised in defining indications for its use. There is a clear and justifiable case for reducing vascularity and bleeding in certain otolaryngological operations as for fenestration in neurological surgery and in certain plastic operations. It is extremely doubtful however, in the present state of our knowledge whether the use of this method is justified merely in order to ease the work of the surgeon in cases in which it is not otherwise specially indicated. Anaesthetists are now well able to reduce oozeing and hemorrhage to reasonable proportions without resort to this expedient. The claim that the methonium drugs, by their autonomic blockade reduce the incidence of circulatory deterioration following trauma (Wyman, 1953) has yet to be established.

The following would seem to be the absolute contraindications to hypotensive anaesthesia:

1. The suspected presence of arterio sclerosis or atheroma of the cerebral and/or coronary vessels
2. Hypotensive states such as Addison’s disease
3. Where, as a result of trauma there is reason to expect a reduction of blood volume and compensatory vasoconstriction
4. In the presence of anaemia, which will intensify the effects of any tendency to ischaemic anoxia
5. In the presence of poor renal function not only is there a risk of further damage to the kidney, but also there will be a delayed excretion of the methonium compounds
6. In Caesarean section, if the maternal blood pressure falls below 80 mm of mercury there may be fatal asphyxia due to obstruction of blood flow by the uterine tone

Although hypotensive anaesthesia has been employed for intrathoracic operations in this country the technique has not gained general favour with thoracic surgeons because of the hazard of reactionary haemorrhage. Small branches of the intercostal vessels particularly in the presence of pleural adhesions are likely to be overlooked and may cause serious trouble post operatively.

In summary, this advance in anaesthesia should be received with cautious enthusiasm by those surgeons who are likely to perform
operations seriously hindered by hemorrhage. For others it should be of interest but employed only when there are specific indications. It is no substitute for good anaesthetic and surgical techniques which together in ordinary general surgery should reduce blood loss to a minimum.

Refrigeration and Hibernation

In 1938 Allen reported that reducing the temperature of a limb increased the survival time following the application of a tourniquet and reduced the condition of shock on removal of the tourniquet. This latter observation has been confirmed by Blalock (1943) and refrigeration of a limb as a method of anesthesia prior to amputation of a limb for gangrene in elderly and poor risk cases is firmly established.

A more recent advance however has been the appreciation that a state of artificially induced hibernation is possible and practicable in human patients. The fact that the natural protective reactions to chilling may produce more harm than the mere cold has led to the development of techniques which will remove these reflexes by sedation (Allen 1950) and by the use of ganglion blocking agents and anti-histamines (Huguenard 1951, Labont 1952). The temperature of a patient may then be lowered by the external application of ice packs or by circulating his blood through a cooling device (Delorme 1952). Under these circumstances the metabolism may be reduced to as much as one third below basal. Under such conditions the oxygen demands are greatly reduced and are satisfied by a very reduced blood flow. Only the smallest dosage with narcotic agents is required to produce sleep and the circulatory reactions to trauma are minimal.

This work is still experimental but is indicative of a more fundamental approach to the problems involved in extensive and radical surgery. The correct therapy may not be to bolster up a failing compensatory mechanism but to lower the metabolic demands of the tissues. New fields are being opened up and these advances may well play an important part in the development not only of surgery of the heart but also of radical procedures in all fields.

References

Allen FM 1950 Curr Res Anesth 29 97
Blalock A 1943 Arch Surg Chicago 46 167
Bouge JG, Collier HOJ and Somers GI 1952 Lancet 1 1225
Bovet E, Bovet Nitti F, Guarino S, Longo V, G and Marotta M 1949 RC Ist sup San 12 106
BROHAC P R 192 Brit Med J 72
BRAT NANCY S C 193 Brit J Anesth 24 24
BISSET C A H and SIMMS E G 1949 J Physiol 111 141
CHURCHILL-DAVISON H C and RICHARDSON V T 1942 Nature Lond 170 617
DAVISON M H ARMSTRONG 1909 Lancet 2 25
DELORME I J 1932 Ibid 1141
DOUGHTY A C and WALK W D 1931 Proc R Soc Med 44 57
DUNNIE J W 1942 Brit Med Jour 1181
ENGBERG C F H 1909 Lancet 1 1145
ENGBERG G F H 1941 Proc R Soc Med 44 829
EVANS B and ENGBERG C F H 1942 Lancet 1 101
EVANS T R FRANKS CRAY P W S LEMAN H and SILL J 1942 Ibid 1 1229
GARDNER W J 1946 J Amer Med Ass 132 572
GILLIES J 1941 Proc R Soc Med 45 1
GRAY T (FOIL and HALTON J 1940 Proc R Soc Med 39 400
GRAY T (FOIL and RUFF C J 1942 Brit Med Jour 1181
GREGORY R A and SCHULTZ H O 1947 Proc XVII Int Physiol Cong 288
GRIFFITH H R and JOHNSTON G F 1942 Anesthesiology 3 418
GRIFFITHS H W C and GILLIES J 1948 Anesthesiology 3 134
HALL D F 1948 Anesthesiology 9 408
HUGHES C 1931 Lancet 1 606
HUGHES P 1941 Anesthesiology Paris 8
KING H 1931 J Inst Med Paris 1381
LABORIT H 1912 Anesthesiology Paris 9 Suppl to No 1
LAFAY A 1942 Brit Med Jour 1268
MILLS B E and WARFNER H F de CHURCHILL-DAVISON H C and WYLLIE W D 1942 Chem Soc 11 74
NISSON E 1943 Brit J Anesth 25 24
ORCAMP G S W 1949 Lancet 1 773
POLLIER J 1900 Centralbl f Physiol 10
POTTEN R W D 1941 Proc R Soc Med 44 829
SARGENT I J and ARROWOOD J G 1946 Surgery 20 31
SAUNDERS J W 1912 Lancet 1 1286
SHACKMAN R GROVER I G MELROSE D G and SMITH J 1942 Anesthesiology 7 217
WEST R 1936 Lancet 1 12
WEST R 1938 J Physiol 107 44
WHITAKER R J and FISHER A J 1944 Anesthesiology 6 124
WYMAN J B 1940 Meeting of Royal Society of Medicine Surgery Section February 4th
CHAPTER IV

\[BURNS\]

A B WALLACE

Experience in the Second World War led to many advances in the treatment of burnt patients and over the past seven years with the many changes in outlook, there has been better understanding of the pathological sequels following thermal injury. However, different physiological responses cause much variation in clinical course. To help to solve some of the remaining problems, research projects and clinical studies are necessary in burn units set aside for the work.

Classification

Burns are classified by extent and by depth. Classification by extent is almost essential since the degree of shock resulting from a burn is directly related to the extent the burn is therefore represented as a percentage of the total body surface. Most workers are familiar with the tables of Lund and Browder (1944), but for a rapid estimation of the extent of surface burnt, use can be made of the so-called Rules of Nine table in which the body is divided into sections representing 9 per cent or multiples of 9 per cent of the body surface. The head and each of the upper extremities are 9 per cent of the total body surface; the front of the trunk, the back of the trunk, and each of the lower extremities are 18 per cent (Fig 3).

For the classification of burns by depth, many descriptive values have been suggested. The most simple and probably most efficient is the division into superficial and deep burns. Superficial implies involvement but not destruction of skin; deep implies that at some point of the burnt area, there has been whole thickness loss of skin. There is no in - - in as to whether subcutaneous fat muscle or bone has been involved, but this information is considered unnecessary in a classification. What is necessary is to decide whether or not there has been destruction of skin.

Cope (1951) has described the burn wound as a parasite which sucks water, protein, and electrolytes from the plasma circulating through its depths. The injury causes increased permeability of
the capillary membranes and a protein rich fluid escapes. The escape is most rapid in the first eight hours after injury and continues for two days. Edema reaches its peak around forty-eight hours with reduction in filtration from the capillaries as a result of recovery of their lining membrane. There follows a period of fluid reabsorption and steady diminution of edema most marked on the third day of the burn. The extent of edema can be influenced to some extent by cold and by exposure. Pressure dressings have been claimed to influence edema formation but I am not in entire agreement. The edema fluid has a greater concentration of plasma protein than tissue fluid but less than that of plasma, the electrolyte pattern is that of plasma or extracellular fluid. The initial phase following receipt of a burn is a slight rise in the protein concentration of the plasma which creates an elevated colloid osmotic pressure. Fluid is absorbed from the unburnt tissues into the blood stream leading to a second phase with a dilute plasma. In the second phase in extensive untreated burns fluid is drawn from the interstitial space into the blood stream with a rise of colloid protein in the interstitial fluid. Water is then drawn in turn from the cells into the extra cellular space. If dehydration is not adequately treated permanent damage may occur to renal cells.

In deep burns there is destruction of red cells with the conglutination of dermal capillaries. Further there may be a delayed hemo globin ema which may be due either to intravascular hemolysis of cells not completely destroyed but rendered more fragile by the same process or to a specific hemolytic factor produced at the site of injury. This process of conglutination limits the continued exudation of fluid upon the surface. The whole blood loss in an extensive deep burn may account for as much as 40 per cent of the total volume deficit (Evans and Biggar 1945).
In the first twenty-four hours after injury the main danger to the extensively burnt patient is from tissue anoxia and its prevention lies in the early and adequate transfusion of fresh whole blood. Anoxia of even a moderate degree and over a comparatively short period will cause permanent damage to hepatic and renal cells. Further, in extensive deep burns there is the danger of liver damage from circulating toxins possibly protein fractions derived from burnt tissue or altered blood components.

The primary concerns in all burnt patients are the upset in fluid balance and the control of circulating toxins. In assessing the general condition of patients with burns, important criteria are the patient's age, the extent and depth of the burn and the time that has elapsed since its receipt. Some clinical indications of ischaemic shock appear before there are any changes in blood pressure, haemoglobin and hematocrit; these are pallor, thirst and restlessness. Assessment is based on this clinical picture, although it may be confirmed later by laboratory findings.

Treatment

Fluid Therapy. Over the first forty-eight hours the aims are (1) To make up the circulating blood volume and to keep pace with fluid loss, and (2) to give the daily fluid requirements.

In fluid replacement colloid and electrolyte solutions are administered intravenously in all burnt patients with over 10 per cent of the surface area involved. To maintain normal renal function, water should be given by mouth. Patients with burns of less than 10 per cent extent can take their electrolyte requirements by mouth.

Plasma and saline should be given in equal proportions so that the total protein and electrolyte content approximates to that of the fluid lost into the injured area. The proportional fluid administration is as follows —

In superficially burnt patients plasma 1, saline 1
In deeply burnt patients blood 2, plasma 1, saline 1
In children under two years in place of isotonic saline a solution containing glucose 4.1 per cent and sodium chloride 0.18 per cent is employed.

The administration is continued over the period of the first forty-eight hours and is divided into three periods: (1) 0 to 8 hours, (2) 9 to 24 hours, and (3) 25 to 48 hours. The fluid should be given most rapidly in the first period.

After forty-eight hours intravenous fluid must be promptly
curtained lest with absorption of the transudate the kidney is overloaded and pulmonary oedema produced.

The best check on the efficiency of the fluid therapy is a half hourly check on the renal output. Changes in urinary output precede significant alteration in hematocrit and hemoglobin readings. A satisfactory level of urinary output in adults is around 50 ml per hour. A level of less than 30 ml per hour indicates inadequacy, although this amount may not be reached in the first twelve hour period.

As a basis for estimating the amount of fluid to be administered to make up the circulating blood volume a formula has been evolved.

Table II—Fluid Therapy in Burns

0-29 per cent Surface Area

<table>
<thead>
<tr>
<th>Age</th>
<th>Electrolyte Solution (ml)</th>
<th>Plasma (ml)</th>
<th>Age</th>
<th>Electrolyte Solution (ml)</th>
<th>Plasma (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3/12</td>
<td>7</td>
<td>7</td>
<td>8-9</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>3 1/2-6/12</td>
<td>10</td>
<td>10</td>
<td>9-10</td>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>6 1/2-9 12</td>
<td>12</td>
<td>12</td>
<td>10-11</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>9,12-1 yr</td>
<td>13</td>
<td>13</td>
<td>11-12</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>1-2</td>
<td>15</td>
<td>15</td>
<td>12-13</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>2-3</td>
<td>21</td>
<td>21</td>
<td>13-14</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>3-4</td>
<td>24</td>
<td>24</td>
<td>14-15</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>4-5</td>
<td>27</td>
<td>27</td>
<td>15-16</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>5-6</td>
<td>31</td>
<td>31</td>
<td>16-17</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>6-7</td>
<td>35</td>
<td>35</td>
<td>17-18</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>7-8</td>
<td>40</td>
<td>40</td>
<td>Adult</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Total volume over first 48 hour period per 1 per cent surface burn

One third volume given 0-8 hours
One third volume given 9-24 hours
One third volume given 25-48 hours

The quantity of fluid given is proportional to the extent of the area into which fluid is being lost and proportional to the normal blood volume of the patient. For the first forty eight hours a 70 kg adult is given 110 ml of plasma and of saline for each 1 per cent of body surface burnt. The rate of administration is such that the total fluid for forty eight hours is divided into three equal parts and administered in the periods 0 to 8 hours, 9 to 24 hours, and 25 to 48 hours post burn. Table II gives values for varying ages. Extensively burnt patients lose large volumes of fluid and in replacement the surgeon must remember that the extracellular body fluid amounts to 20 per cent of the body weight and that the maximum expansion of this space compatible with safety is 50 per cent. The quantities
given in Table II can be used with safety for patients with burns up to 30 per cent of surface area, but the estimated requirement for those with burns of more than this extent would exceed the safety level. This safety level is equivalent to 10 per cent of the total body weight. The formula given in Table III which is related

TABLE III — Fluid Therapy in Burns

(30 per cent Surface Area or over)

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight (kg)</th>
<th>Age</th>
<th>Weight (kg)</th>
<th>Age</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-3 12</td>
<td>5</td>
<td>4-5</td>
<td>18</td>
<td>11-12</td>
<td>35</td>
</tr>
<tr>
<td>3/12-6/12</td>
<td>7</td>
<td>5-6</td>
<td>20</td>
<td>12-13</td>
<td>39</td>
</tr>
<tr>
<td>6/12-9/12</td>
<td>9</td>
<td>6-7</td>
<td>22</td>
<td>13-14</td>
<td>43</td>
</tr>
<tr>
<td>9/12-1 yr</td>
<td>10</td>
<td>7-8</td>
<td>24</td>
<td>14-15</td>
<td>48</td>
</tr>
<tr>
<td>1-2</td>
<td>13</td>
<td>8-9</td>
<td>26</td>
<td>15-10</td>
<td>54</td>
</tr>
<tr>
<td>2-3</td>
<td>15</td>
<td>9-10</td>
<td>28</td>
<td>16-17</td>
<td>59</td>
</tr>
<tr>
<td>3-4</td>
<td>17</td>
<td>10-11</td>
<td>32</td>
<td>17-18</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult</td>
<td>70</td>
</tr>
</tbody>
</table>

Total volume over first 48 hour period = 10 per cent body weight in kg
(equal parts colloid and electrolyte) (1 kilogram = 1 litre)

One third volume given 0-8 hours
One third volume given 9-24 hours
One third volume given 25-48 hours

to interstitial space expansion and based on the average body weight at different ages, is employed for patients with burns of over 30 per cent extent. The calculated total (10 per cent of total body weight) over forty eight hours is divided into thirds and one third is given in each of the periods 0 to 8 hours, 9 to 24 hours and 25 to 48 hours post burn.

In all patients in addition to the replacement fluid, the daily

TABLE IV — Normal Daily Fluid Requirements

<table>
<thead>
<tr>
<th>Age</th>
<th>Metabolic Requirement (ml)</th>
<th>Age</th>
<th>Metabolic Requirement (ml)</th>
<th>Age</th>
<th>Metabolic Requirement (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-3/12</td>
<td>700</td>
<td>4-5</td>
<td>1400</td>
<td>11-12</td>
<td>1700</td>
</tr>
<tr>
<td>3/12-6/12</td>
<td>1000</td>
<td>5-6</td>
<td>1500</td>
<td>12-13</td>
<td>1800</td>
</tr>
<tr>
<td>6/12-9/12</td>
<td>1150</td>
<td>6-7</td>
<td>1500</td>
<td>13-14</td>
<td>2000</td>
</tr>
<tr>
<td>9/12-1 yr</td>
<td>1200</td>
<td>7-8</td>
<td>1500</td>
<td>14-15</td>
<td>2200</td>
</tr>
<tr>
<td>1-2</td>
<td>1300</td>
<td>8-9</td>
<td>1600</td>
<td>15-16</td>
<td>2400</td>
</tr>
<tr>
<td>2-3</td>
<td>1400</td>
<td>9-10</td>
<td>1600</td>
<td>16-17</td>
<td>2600</td>
</tr>
<tr>
<td>3-4</td>
<td>1400</td>
<td>10-11</td>
<td>1700</td>
<td>17-18</td>
<td>2800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult</td>
<td>3000</td>
</tr>
</tbody>
</table>

Total volume is given orally if possible in hourly or half hourly doses
as orange juice, sweetened tea etc.
metabolic requirement must be met. This fluid is required for normal renal function, and to make up loss of water from gut, skin and lungs. Table IV indicates the metabolic requirements for different ages. This fluid is given by mouth every four hours in divided hourly doses as glucose drinks or as water. When there is vomiting or when drinks are refused, the whole requirement must be given intravenously, and the metabolic requirement added as isotonic solution. In infants, it is always preferable to give sodium chloride solutions by mouth so that the child controls the rate of absorption.

It is important to remember the two types of fluid requirement—(a) replacement and (b) metabolic.

From Tables II, III and IV the fluid requirements can be readily estimated, but the tables are intended only to be guides and it may be found that patients with burns of over 50 per cent may require more than the calculated amount of fluid. Further, adults vary considerably in weight, and the figures given are for the average female or male. They can be presented in the form of a ready reckoner (Fig. 4) or in a type of calculator such as the Pyrogram (Fig. 5). (Wallace 1953)
In the early treatment of burnt patients plasma substitutes or expanders have been used with advantage. I believe, however, that extensively burnt patients require blood and plasma to help protect the liver and kidneys and to counter early circulating toxins. Because assessment of the efficacy of fluid therapy is judged by urinary output a catheter should be passed into the bladder in a patient who is receiving intravenous therapy fixed in position, clamped and released every hour. Quantities must be charted. The average daily values are depicted in Table 7.

<table>
<thead>
<tr>
<th>Age</th>
<th>Satisfactory Hourly Urine Output (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>8-20</td>
</tr>
<tr>
<td>1-5</td>
<td>20-25</td>
</tr>
<tr>
<td>5-10</td>
<td>25-30</td>
</tr>
<tr>
<td>10-14</td>
<td>30-50</td>
</tr>
<tr>
<td>14+</td>
<td>50-100</td>
</tr>
</tbody>
</table>

Supportive Measures

Sedation Morphine has been found to be the most satisfactory sedative. Smaller doses are required than are usual for the age and weight and the drug should be given slowly through the intravenous cannula, to avoid the danger of accumulation and sudden absorption of successive doses from the subcutaneous tissues.

Oxygen Administration of oxygen at the rate of 3 litres per minute by means of intranasal catheters has been found to be the most satisfactory method. In severely shocked children aeration of the lungs is poor and it is possible that there may be some degree of central in addition to peripheral anoxia.

Posture Careful positioning should be adopted as a first aid measure for burns of the extremities and should be continued throughout the early care.

Local Treatment Local care is undertaken only when the general condition of the patient is considered to be satisfactory. Attention is directed towards (a) the limitation of oedema, (b) immobilization of the part, and (c) prevention of infection.

Oedema can be limited by early and effective posture. I believe that there is no definite evidence to support the belief that pressure dressings control oedema.

Immobilization is effected by restraint or splinting. In the early
phases of response to injury, complete rest permits the repair of tissues.

Infection is controlled by systemic administration of antibiotics and by making the burnt area unfavourable for the growth and multiplication of organisms. A dry, cool surface deprives organisms of the warm moist environment required for their proliferation. To render burnt surfaces dry, the parts can be exposed to the air or can be covered with dressings which are absorptive. Factors which keep the surface or the dressings moist must be eliminated at the earliest moment. The terms 'open' and closed to differentiate covered or uncovered methods of treatment should be avoided. Within forty-eight hours exposure of a superficial burn to the air leads to the formation of a crust impermeable to organisms. A deep burn from the first is covered with an impermeable eschar. The exposure method therefore is a closed method of treatment.

The two forms of local care—exposure and absorptive dressings—are not distinct but are closely related and interchangeable. Choice of method depends on such factors as the number of casualties, the supplies available, the geographical and climatic conditions, and the experience of the surgical and nursing staff of one or other of the methods. Absorptive dressings are useful for first aid in the field. At the base hospital, the dressings will be removed and the burn exposed or a further absorptive dressing applied.

If dressings are applied they must be absorptive, if they become saturated they are no longer beneficial but dangerous. An entirely satisfactory absorptive dressing has not yet been evolved. At the moment I employ Gamgee material.

In a superficial burn the aim of treatment is to get an early crust which within three weeks will separate to leave healed skin, and in a deep burn to excise the eschar within three weeks and obtain healing by grafted skin.

In extensive burns the fulfilment of such aims may be prevented by several factors—insufficient donor skin, inability to remove all necrotic tissue at one operation, the extremes of age and lack of adequate veins for blood transfusion.

In my burns unit, cleansing is often done under inhalation anaesthesia (cyclopropane) which can be considered a form of sedation. The burnt area is cleansed with 1 per cent cetrimide or isotonic saline. Blisters are snipped and raised epidermis is removed. The burnt surface is then gently dried with gauze. As soon as possible penicillin is administered systemically either intramuscularly or in the intravenous fluid in a dosage of 0.5 megunit.
in each twenty four hours. In children the oral administration of terramycin has been found to be equally effective. Nevertheless I feel that any method of treatment which depends for success on the effectiveness of antibiotic therapy is doomed sooner or later to failure.

The principles of exposure with immobilization are easy to fulfil in certain areas of the body and more difficult in others. Regions characteristically straightforward in respect of treatment are the face, upper arm and forearm, front of trunk and abdomen, genitalia, buttocks and thighs, and the more troublesome are the neck, circumferential burns of the trunk and burns of the legs, hands and fingers. Deep burns present additional problems and should be considered separately.

Face The patient is nursed on his back and the face exposed. The eyelids, the vestibules of the nose, the lips and the external auditory canals are initially, lightly smeared with soft paraffin. Discharge from the eyes, nose or ears is gently removed. In deep burns of the eyelids it is preferable to do an immediate tarsorrhaphy and to consider early excision and grafting.

Upper Arm Elevation and relative immobilization can be achieved by suspension through adhesive strips applied to the forearm and the burnt surface can thus be exposed readily.

Forearm The weight of the upper extremity can be dispersed by taking some support through suspension from the upper arm and by tapes from a stockinette mitten applied to the hand and burnt area exposed.

Trunk Abdomen and Back (one aspect only) There are few nursing difficulties in these regions and the burnt surface is exposed freely. The patient can be allowed up from the fourth day.

Genitalia Compared with that obtained by other methods of treatment, healing following exposure has been found to be rapid and nursing care straightforward. Children should be placed on a frame suspended over the normal mattress.

Buttocks Perineum and Upper Thighs Burnt surfaces of this distribution are best exposed. In children the lower extremities are raised by skin traction from gallows splints until the buttocks are off the bed. Adults with burns of the buttocks and perineum are nursed prone with the legs slightly abducted.

Neck Although the principle is more difficult to apply, I still prefer to expose burns of the neck. Moderate extension over a pillow is advised. Systemic penicillin is continued as long as the neck continues to be moist or cracks tend to occur in the crust.

Circumferential Burns of the Trunk and Legs The use of the
Infection is controlled by the administration of antibiotics and by making the burn area unfavourable for the growth and multiplication of organisms. A dry cool surface deprives organisms of the warm moist environment required for their proliferation. To render burn surfaces dry the parts can be exposed to the air or can be covered with dressings which are absorbent. Factors which keep the surface or the dressings moist must be eliminated at the earliest moment. The terms open and closed to different covered or uncovered methods of treatment should be avoided. Within forty-eight hours exposure of a superficial burn to the air leads to the formation of a crust impermeable to organisms; a deep burn from the first is covered with an impermeable eschar. The exposure method therefore is a closed method of treatment.

The two forms of local care—exposure and absorbent dressings—far from being distinct are closely related and interchangeable. Choice of method depends on such factors as the number of casualties, the supplies available, the geographical and climatic conditions, and the experience of the surgical and nursing staff of one or another of the methods. Absorbent dressings are useful for first aid in the field. In the burn hospital the dressings will be removed and the burn exposed or a further absorbent dressing applied.

If dressings are applied they must be absorbent if they become saturated they are no longer beneficial but dangerous. An entirely satisfactory absorbent dressing has not yet been evolved. At the moment I employ (amulex material).

In a superficial burn the aim of treatment is to get an early crust which within three weeks will separate to leave healed skin and in a deep burn to excise the eschar within three weeks and obtain healing by grafted skin.

In extensive burns the fulfilment of such aims may be prevented by several factors—insufficient donor skin, inability to remove all necrotic tissue at one operation, the extremes of age and lack of adequate veins for blood transfusion.

In my burns unit cleansing is often done under inhalation anaesthesia (cyclopropane) which can be considered a form of sedation. The burnt area is cleansed with 1% per cent cetrimide or isotonic saline; blisters are snipped and raised epidermis is removed. The burnt surface is then gently dried with gauze. As soon as possible penicillin is administered systemically either intramuscularly or in the intravenous fluid, in a dosage of 0.5 megaunit.
in each twenty four hours In children the oral administration of terramycin has been found to be equally effective Nevertheless, I feel that any method of treatment which depends for success on the effectiveness of antibiotic therapy is doomed sooner or later to failure

The principles of exposure with immobilization are easy to fulfil in certain areas of the body and more difficult in others Regions characteristically straightforward in respect of treatment are the face upper arm and forearm front of trunk and abdomen genitalia buttocks and thighs and the more troublesome are the neck, circumferential burns of the trunk and burns of the legs hands and fingers Deep burns present additional problems and should be considered separately

Face The patient is nursed on his back and the face exposed The eyelids the vestibules of the nose the lips and the external auditory canals are initially lightly smeared with soft paraffin Discharge from the eyes nose or ears is gently removed In deep burns of the eyelids it is preferable to do an immediate tarsorrhaphy and to consider early excision and grafting

Upper Arm Elevation and relative immobilization can be achieved by suspension through adhesive strips applied to the forearm and the burnt surface can thus be exposed readily

Forearm The weight of the upper extremity can be dispersed by taking some support through suspension from the upper arm and by tapes from a stockinette mitten applied to the hand and burnt area exposed

Trunk Abdomen and Back (one aspect only) There are few nursing difficulties in these regions and the burnt surface is exposed freely The patient can be allowed up from the fourth day

Genitalia Compared with that obtained by other methods of treatment, healing following exposure has been found to be rapid and nursing care straightforward Children should be placed on a frame suspended over the normal mattress

Buttocks Perineum and Upper Thighs Burnt surfaces of this distribution are best exposed In children the lower extremities are raised by skin traction from gallows splints until the buttocks are off the bed Adults with burns of the buttocks and perineum are nursed prone with the legs slightly abducted

Although the principle is more difficult to apply I still prefer to expose burns of the neck Moderate extension over a pillow is advised Systemic penicillin is continued as long as the neck continues to be moist or cracks tend to occur in the crust

Circumferential Burns of the Trunk and Legs The use of the
sectional nursing frame has proved valuable in the nursing of patients with extensive burns. When expert nursing is available I still favour the exposure method. It is impossible to sterilize the surface of an extensive burn and if a dressing is applied organismal growth is encouraged. In circumferential burns in children I avoid dressings wherever possible. Weight bearing parts rest on absorptive pads. Camgee bags containing at least a 1 in layer of sawdust are useful. They are changed daily. Further research should lead to improved forms of pads.

Hands and Fingers Burnt fingers can be exposed to advantage but if the surgeon is inexperienced in the method the fingers are best covered by absorptive dressings which can be applied in two Camgee sections. (1) A mitten part to cover the palm and volar aspect of forearm and also the dorsum of hand and forearm each finger being threaded through a hole and (2) a finger or glove part with a pad attached to it for the fingers to grasp. Such a sectional dressing can be prepared in small bulk and can be applied very quickly.

The Deep Burn The problems of the deep burn are common to all methods of local treatment. The affected surface must be kept dry and cool. Patients with extensive deep burns show around the third to tenth day a toxemia. The severity of the clinical picture appears to be correlated with an elevation of the plasma protein nitrogen. This rise is due chiefly to an increase in an as yet undetermined fraction. There is no doubt that skin coverage at the earliest possible moment is the ideal aim but few children and few elderly patients will tolerate extensive excision and grafting at less than two to three weeks after a severe injury except under expert hands. Early excision of the burnt tissue removes a possible source of the circulating toxin as well as removing the areas which would become infected. If toxemia is marked and early excision undesirable or impracticable exchange transfusion can be employed to advantage.

The area of crusts removed when grafting is adjuvanted advisable depends on the total surface area of the crust and on the skin available for cover. The use of homografts must be considered. One of the urgent necessities to day is the training of teams for extensive rapid skin coverage. The longer the period taken to obtain complete skin cover the greater the danger of local infection.

General Factors

Throughout treatment the nutrition of the patient must play an important role. From the third day after injury, a high calorie
high protein diet must be built up and maintained. At the same time some caution is required to avoid gastric irritation or distension. In addition to early blood loss from an extensive deep burn, there is an inhibition of marrow activity which persists until healing is nearly accomplished. This secondary anemia is corrected only by repeated blood transfusions throughout the course of treatment. Vitamin intake must be adequate.

References

COPE O 1951 Symposium on Burns National Research Council Washington (D.C.)
EVANS E I and BIGGAR I A 1945 Ann Surg 122 693
LUND C C and BROWDER N L 1944 Surg Gynec Obstet 79 352
WALLACE A B 1933 Practitioner 170 109
PART II THE ALIMENTARY TRACT

CHAPTER V

CANCER OF THE PHARYNX

SIR STANFORD CADI

Anatomical Considerations

Surgery of the pharynx, with the exception of the treatment of pharyngeal diverticula, is the surgery of cancer of that site only. That part described as the laryngopharynx lends itself to radical surgery. It extends from the level of the epiglottis to the upper border of the esophagus and can be further subdivided into the upper part or epipharynx above the upper border of the cricoid cartilage and the hypopharynx below it. Malignant tumours arise

\[123456789\]
in definite anatomical sites and their incidence, progress, symptomatology vary with such sites of origin.

Tumours of the Epipharynx These comprise two anatomical groups: (1) lesions in the region of the ary epiglottidean fold, the larvgeal aspect of the epiglottis, or the arytenoids, (2) lesions of the pyriform fossa (Fig. 6) and of the lateral pharyngeal wall. Both these groups occur chiefly in men in the fifth or sixth decades whereas the ary epiglottidean tumours are associated with some alteration of voice, those of the pyriform fossa are clinically silent and often first attract attention by their cervical lymphnode metastasis.

Fig. 6 - Tonsiloid carcinoma. Operation specimen removed by laryngo-pharyngectomy. Extensive lesion involving the anterior wall of the hypopharynx from the arytenoid down wards.
Tumours of the Hypopharynx The common site in this group is the post oropharyngeal carcinoma situated on the anterior wall of the hypopharynx (Fig. 7). It occurs nearly exclusively in women and the age incidence is earlier in the fourth decade. Lesions on the posterior wall of the hypopharynx arise at a lower level at the junction with the esophagus. They occur most commonly in men and the age incidence is the fifth and sixth decades.

Both types of hypopharyngeal tumours manifest themselves clinically first by some difficulty in swallowing.

Clinical Considerations

Cancer of the laryngo pharynx spreads along the mucous membrane and extends in the submucosal tissues and infiltrates the deep layers of the cervical fascia, specially the pretracheal layer. It spreads by direct extension causing oedema of the surrounding structures and by lymphatic vessels to the deep cervical lymph nodes. In many cases the primary growth and the lymph nodes are in direct continuity. It is important to assess accurately the exact extent of the tumour as this depends the choice of treatment. Early diagnosis can be achieved in most cases if attention
is paid both by the patient and the doctor to the persistence of two cardinal signs, however slight, some change in the voice, or some difficulty in swallowing. Accurate diagnosis can be achieved by indirect laryngoscopy, X-ray examination and direct laryngoscopy and biopsy.

Radiological Investigations This affords considerable help and requires some emphasis. Once a presumptive diagnosis of cancer of the pharynx is made on routine clinical examination, by laryngoscopic inspection and careful palpation of the neck, radiology can add considerably to the detailed knowledge of the extent of the lesion and the condition of the airway. Two methods of radiological investigation are available: (1) a lateral soft tissue view of the neck using air as a contrast medium (Valsalva). This gives a profile view of the vallecula, epiglottis, the prevertebral space, and trachea (Fig 8). The tumour is shown as a soft tissue shadow in
front of the cervical vertebra. Its size and extent especially upper and lower limits are well defined. (2) Tomography and posterior views show abnormalities of the cortes ventricle Morgagni and subglottic space (Fig. 9). Tumours of the epiglottic fold and of the pyriform fossa are clearly shown and contrast vividly with the normal sub. A direct laryngoscopy examination adds further detailed knowledge of the tumour affords a possibility of biopsy. Histological examination establishes a definite diagnosis of a neoplasm and also adds the detail information of the degree of differentiation or malignancy and gives indication as to the likely response to radiotherapy. It is often essential to investigate by radiology the presence or absence pulmonary metastases and by a general clinical examination the fitness of the patient for a major surgical procedure.

Surgery of the Pharynx in the Past

Attempts at removal of the pharynx and cervical oosophagus back to Czerny who in 1877 resected a growth from the posterior region and cervical oosophagus. Pioneers in surgery of the pharynx include Mackler (1886), de Quervain (1899), Von Hacker (1900), but it was Wilfrid Trotter who in 1914 described what can be considered as the modern method amm, at the removal of the larvopharynx. Trotter was imbued with the belief that in the treatment of pharyngeal cancer the conservative of the larvopharynx was of great importance. Trotter devised the operation of lateral transhyoidean pharyngotomy. This gave access to the pharynx and enabled the surgeon to remove a portion of it for cancer of the pyriform fossa and lateral pharyngeal wall. It conserved the larvopharynx obviating the need for a permanent tracheotomy and was in fact acceptable to the patient. Although a great landmark in the surgical treatment pharyngeal cancer this operation had great limitations both regards the extent of the removal of the tumour and of the surrounding healthy tissue but also as regards operability. It was applied to early and limited growths with early if any lymphnode involve. It was a two stage operation having a temporary pharyngostomy. The limitations of Trotter's operation were an incentive to subm pharyngeal cancer to alternative methods of treatment and as the advent of radiotherapy a number of patients were treated radiation. The effect of radiotherapy in its first phase—when k voltage X rays only were available—was poor. Even now conventional X ray therapy at 200-250 kV has very little to recommend it, even as palliative treatment. The physical limitations this range of radiation make it a disappointing method of treatment.
Attempts at increasing the total dose with the then available apparatus resulted in severe post radiation effects with oedema and necrosis and hardly any control of the disease. This led to the protracted fractional treatment first advocated by Coutard at the Paris Radium Institute. Teleradium further improved results and some cases of pharyngeal cancer were completely controlled by it (Fig 10) yet the achievement of radiotherapy in cancer of the pharynx is still meagre and contrasts very markedly with that in the intrinsic laryngeal cancer where in the majority of early cases it is now the method of choice. Although there is a definite place for radiotherapy in cancer of the pharynx, specially by teleradium telecobalt and supervoltage X rays the results on the whole by the usual available methods are disappointing and further efforts at surgical excision were called for.

Modern Conception of Surgery of the Pharynx...

Conservatism in surgery of cancer is dictated by humane considerations to avoid functional disability. It is also put forward at times as a counsel of despair because even very extensive surgery frequently fails to cure. Yet in the fight against such a formidable foe conservatism should be primarily directed to the patient and not to function. It is in fact better pathology and more effective surgery to conserve the patient and not the anal sphincter, the normal speech or some other function. It is a conception based
on experience that it is better to be alive and free from cancer with a colostomy or a tracheotomy than to succumb to the disease with a normal method of defecation or respiration.

Such a concept of the surgical treatment of cancer dictates a policy of wide ablation of the disease. In the case of cancer of the pharynx as in other malignant growths the limits of the excision are defined mainly by the extent of the disease but also by some anatomical details and its potential mode of spread. To ablate

![Image](image1.png)

Fig. 11. A. Cricoid carcinoma. Outline of V-shaped incision for immediate one stage reconstruction following total laryngopharyngectomy. B. Incision outlined in ink. B. Lost radiation scar showing V-shaped incision and tracheotomy.

widely a cancer of the pyriform fossa or of the post-cricoid area the tissue removed should include the cartilages framework and musculature well beyond the actual tumour. It should include the epiglottis the hyoid bone the thyroid and cricoid cartilages and at least two rings of the trachea. The pharynx itself that is the laryngopharynx must be excised *in toto* from the base of the tongue at its junction with the epiglottis to the upper border of the cervical oesophagus (see Figs 11 and 12). The intimate anatomical relation between the pharynx and the larynx precludes the preservation of
the latter without a grave risk of local recurrence of the disease. The common occurrence of metastases in the cervical lymphnodes indicates the need of a block dissection of the lymphatic field and the close proximity of the thyroid at times makes it unavoidable to include part of the thyroid in the resection. Such vast excision is to-day both safe and simple. The advances in anaesthesia, easy replacement of blood loss, shock preventing measures, and a variety of antibiotics have rendered the excisional part of the operation a reasonable procedure with a very low mortality. The possibility of wide excision of the cervical viscera and the adjoining lymphnodes has two main advantages; it gives greater safety against local recurrence and it broadens the field of operability. In fact in cases of early diagnosis and small lesions it gives a far better chance of a permanent control of the disease, and in the established and even advanced cases it still permits sufficiently wide excision to warrant its undertaking.

The morbidity which follows such operative procedures is however
great, especially the inability to swallow, the need of tube feeding and the continuous dribbling of saliva. Although a permanent tracheotomy is usually accepted as unavoidable the gap in the continuity of the alimentary canal remains a formidable problem. It is the repair of this gap, extending the whole length of the neck from the base of the tongue to the cervical oesophagus which has exercised the ingenuity of the modern surgeon.

Excision of the Pharynx and Larynx

Laryngopharyngectomy should include the epiglottis and thus division of the base of the tongue at its junction with the epiglottis constitutes the upper limit of the operation. Distally the trachea is severed between its second and third rings and the cervical oesophagus is divided at the same level. The skin incision varies with the proposed method of closure or reconstruction. A quadrilateral flap can be fashioned by two horizontal incisions at the level of the hyoid and just above the sternal notch. Hinged on a broad lateral attachment or two smaller similar flaps can be fashioned. Alternatively a 7-shaped incision provides two broad based and viable flaps (Fig 11A). The flaps consist of skin subcutaneous tissues and platysma. In the presence of enlarged lymphnodes the first step in the operation is a block dissection of the neck, which includes the sternomastoid muscle and internal jugular vein. In the absence of enlarged lymphnodes the sternomastoid is cut across at the lower end. The thyroid gland can be preserved in which case the isthmus is cut across or a hemithyroidectomy is done if the thyroid is involved by the disease. The infrahyoid muscles are peeled off and preserved or in advanced cases removed on the same side as the thyroid. The trachea is divided and the oesophagus exposed and cut across. The oesophagus and hypopharynx are separated from the prevertebral muscles and fascia and the pharynx incised above the level of the hyoid bone. The magnitude of the operation varies a little with the extent of the disease but such variations affect only the removal of the lymphnodes, the thyroid and infrahyoid muscles it should not affect the extent of the removal of the pharynx and larynx.

Reconstruction

This can be carried out in two stages or one. The two stage operation has been practised for many years and was rationalized by Wilfrid Trotter in 1913. All two stage operations leave a temporary gap in the newly constructed pharynx and feeding is by means of a tube passed either directly into the pharyngostomy or
through the nose. A polythene tube is preferable to a rubber one as it causes less irritation of the tissues and is better tolerated even for very prolonged periods.

Woolsey's operation is based on that of Trotter. It permits how ever a wider excision as it includes the larynx. The size of the flap is greater but even so it is limited and the reconstruction depends upon the size of the skin flap. The flap is laid on the prevertebral fascia and forms the posterior wall of the new pharynx. It is secured in position by stitches and should be without tension. The upper end of the skin flap is joined to the posterior cut edge of the pharynx the flap is then turned on itself and the sutures continued on the anterior cut edge of the pharynx. Similarly the oesophagus is joined to the lower part of the flap. There is thus formed a full thickness skin funnel joining the oropharynx to the oesophagus. This funnel is open along its lateral border. The raw surface on the opposite side of the wound is covered by a free skin graft. The cut end of the trachea is sutured to the skin above the sternal notch. The second stage is undertaken four to six weeks later and consists in the closure of the pharyngostome. The original flap may slough at its free edge and the second stage may thus be delayed. If the loss of skin is considerable, only the posterior wall of the new pharynx is thus formed. In such cases the anterior wall can be constructed from tube pedicles raised from the chest wall. The tube pedicle method necessitates multiple operations and it usually takes many months before final closure is achieved (Fig 12). The final result is satisfactory and stenosis of the new pharynx is exceptional should this occur it lends itself to periodical and gradual dilatation.

One Stage Reconstruction

Immediate reconstruction offers many advantages. Primary repair of the pharynx enables the patient to swallow normally within a few weeks and obviates the need of multiple stage operations. The method was devised by C. G. Rob and modified by V. Negus. It consists in the use of a large polythene tube used as a temporary carrier around which is wrapped a split skin graft taken from the thigh. The original skin flap is used to close the wound and healing by first intention is obtained. This method is to date the greatest advance in the surgical treatment of pharyngeal cancer. It is very promising and should be applicable to a larger number of cases. It is still in the experimental stage and will need gradual modification with increased experience. Its most serious drawback at present is the tendency to stenosis which may be so great as to
preclude dilution and necessitate a gastrostomy. Nevertheless, it is at present the most promising method.

Technique of Primary Repair

Negus has designed a wide bore polythene tube, oval in cross section, expanded into a funnel at its upper end and a round collar-shaped lower end. A split skin graft taken from the thigh is

![Image 13](image13.jpg) Radiograph of neck showing a Negus type of plastic tube on which the skin graft has been placed. Within is a small polythene tube for feeding. The black dots show the attachment to the skin of metal clips on stitches passing through the skin and the tube from one side of the neck to the other to maintain the tube in position.

![Image 14](image14.jpg) Barium swallow after total laryngo-pharyngectomy and immediate one-stage reconstruction showing the length of new pharynx made out of a Thiersch graft. The Negus tube has been removed. Tracheotomy tube shown.
wrapped round the tube with the raw surface outwards (Fig 13). The tube is inserted into the oesophagus to which it is sutured with catgut sutures. Similarly the upper funnel shaped end which lies at the level of the vallecula is sutured to the pharynx. A smaller polythene tube is passed through the nose into the lumen tube and down the oesophagus; this tube is used for feeding. Saliva can be swallowed and passes down the main tube. The original Z shaped skin flaps cover the skin graft and tube. To prevent displacement of the tube two or three nylon or fine wire stitches are inserted through the skin and through the tube and serve to anchor the tube in position. The period of time the large polythene tube is left in position varies according to individual taste. They can be removed (through the mouth) as early as the second week but have been left in situ for several months. The method lends itself to many variations in detail. The patient is fed through the inner small tube but is allowed to swallow water at the end of a week. Primary healing is aimed at and is achieved in most cases (Figs 14 and 15).
References

Coutard H 1913 Laryngoscope 25 311
Coutard H 1913 Amer J Otol 12 313
Czerny 1877 Contr侦ilit Chirurg 4 473
de Quervain 1890 Arch f Klin Chir 58 11
Mikulicz H 1880 Diet und Wachs 12 157
Nectoux J 1918 Proc L SOC Med 45 24
Rob C C 1911 Brit Surg 152 Surg Progress 103
Brother W 1913 Lancet 1 10
Woolley H 1918 Brit J Surg 37 311
Von Hacker 1908 Verh d d Cls f Inn Chir 37 10
CHAPTER VI

THE OESOPHAGUS

HAROLD C EDWARDS

CONGENITAL ATRESIA

The pioneer work of Haight (1944) and of Ladd (1944) in the U.S.A., and of Franklin (1947) in this country, has led to a much better prospect of survival for the infant born with atresia of the oesophagus. Thus Potts (1950) records seven successes in twenty patients operated upon and Belsey and Donnison (1950) five survivors out of ten. Haight (1953) summarizes his experience as follows: since 1939 144 cases of oesophageal atresia have been seen, most of whom have had tracheo-oesophageal fistula. Nine of the patients were not operated on because their condition did not warrant operation, seven of which were prior to 1947, and only two since January 1st, 1947. There were 72 operative recoveries. Nine of the patients who recovered from operation have subsequently died from causes typical to the operation or more frequently from causes apart from the operation. These nine cases all died subsequent to their original discharge from the hospital. Sixty three of these have been treated by oesophageal anastomosis, nine by the multiple stage plan (and their two stomas had not as then been connected), and one by primary oesophagogastrostomy.

The above results include all patients operated on including those during the developmental period of the operation. Recent figures show a recovery rate in the vicinity of 60 per cent.

To secure a still better proportion of successes, two things are necessary. The first is that all those concerned with the care of the newborn, including midwives, should be well acquainted with the earliest signs of the anomaly and the second is that all surgeons associated with pediatric departments should be thoroughly versed both in the means of diagnosis and the technique of the operative treatment for success depends above all things upon immediate action.

Incidence and Types

The incidence of atresia is probably greater than Franklin’s original estimate of one in 2500 births, and probably approximates
more closely to the estimate given by Belsey and Donnison of 1 in 500

Vogt's well-known classification (1929) of the variations in the anomaly is still acknowledged and may here be quoted —

Type 1 Complete absence of the oesophagus

Type 2 Atresia of the oesophagus with both upper and lower segments ending blindly

Type 3 (a) Atresia of the oesophagus with a fistula between the upper oesophageal segment and the trachea
(b) Atresia of the oesophagus with a fistula between the lower oesophageal segment and the trachea
(c) Atresia of the oesophagus with a fistula between the trachea and both segments of the oesophagus

Of these types 3 (b) is easily the most common (32 of 75 cases, Potts (1950)) with Type 2 a distant second in order of frequency of incidence. All other forms are very rare.

Diagnosis

Death from pneumonia is the inevitable fate of the untreated case and is also the main cause of mortality in those submitted to operation. It is therefore of the greatest importance that diagnosis should be made before pneumonia has developed and before in fact any attempt at feeding by mouth has been attempted. Diagnosis should ideally be made before the onset of the classical signs of choking attacks with cyanosis and dyspnoea during attempts to feed.

In the commonest form of the deformity (Type 3 (b)) the symptoms depend upon the passage of mucus and gastric secretion from the lower oesophagus into the trachea and spill over of mucus from the oesophageal pouch and conversely the entrance of an excessive amount of air into the stomach. The first signs may therefore be the appearance of frothy mucus within twenty-four hours of birth, perhaps tinged with bile and a significant distension of the abdomen. These findings should be followed at once by testing the potency of the oesophagus by the passage of a medium-sized adult rubber catheter. If the passage of this be arrested aspiration should be carried out and the character and quantity of any result there may be noted. Diagnosis is then confirmed by introducing 1–2 ml of iodized oil through the catheter and X-raying the mediastinum. An egg-shaped cavity will be revealed (Fig 16). Radiology will also usually reveal an excessive amount of air in the stomach and intestine though the absence of this feature does not eliminate the possibility of the existence of a tracheal
fistula for as Donnelly (1950) has pointed out, the opening from the trachea into the oesophagus may be valvular.

In Type 2 (atresia with two blind oesophageal ends) the significant radiological finding is complete absence of any gastrointestinal gas. Belsey and Donnison (1950) believe that respiratory distress due to atelectasis which for reasons unknown is commonly associated with atresia should itself lead to the attempted passage of an oesophageal catheter.

Treatment

Immediately the diagnosis is made penicillin therapy is started the pouch kept empty by intermittent suction through a catheter and preparations for operation made. Delay in operation...
is only permissible in those in whom there has been delay in diagnosis and who in consequence may be dehydrated, and in whom pneumonia may already be present. For them a period of twelve hours or so may be devoted to improving the condition by a transfusion of 30 to 40 ml of fresh blood and to await the beneficial action of the penicillin.

Operation

If the assistance of an anesthetist skilled in the art of anesthesia in infants is not available open ether associated with local anesthesia is the method best adopted. If the choice is free exposure should be made through the right side of the chest. Haught (1944) recommends an approach through the left side if the left lung is impeded so as not to embarrass the healthy right lung. Extra-pleural versus transpleural exposure of the oesophagus has been a subject of debate for some years but the general trend now seems to be in favour of the transpleural approach which unquestionably gives a much better access is easier to perform, and is not followed by any undesirable consequences.

The pleural cavity is entered either through an intercostal incision or after subperiosteal resection of the fifth rib. If the approach is from the right the azygos vein must be divided between ligatures. If from the left the aorta must be mobilized and retracted after dividing between ligatures the first two or three intercostal arteries. The upper pouch is sought in the areolar tissue behind the trachea its discovery being facilitated by the passage by the anesthetist of a small rubber catheter through the patient's nose. The pouch is freed gently from its bed but stripping should be cautious otherwise vitality of its wall may be jeopardized. Should cyanosis be observed the cyanotic area should be cut away until bleeding is seen from the cut edge (Belsey and Donnison). The lower segment is then looked for and unless very short is found without difficulty. If the approach is from the right side the vagus will act as a guide to it. It is freed from surrounding connective tissue and its attachment to the trachea is defined. A small curved clamp is placed across the fistula; two guide sutures are passed through the wall of the oesophagus and the latter cut free from the trachea. The fistula is closed over the clamp by two or three interrupted stitches and pulled tight as the clamp is removed. The two oesophageal ends can now be brought together although there will be some tension owing to the tendency of the longitudinal muscle, particularly that of the lower segment to contract and widen the gap.

An opening is made into the upper pouch at a point just posterior...
to its centre. A No. 8 French soft catheter, with the trumpet end removed, is passed upwards through the opening into the mouth where it is grasped and held by the anesthetist, the other end of the catheter is passed down the distal portion of the oesophagus into the stomach.

A single-layer anastomosis is now made with closely placed interrupted sutures of fine silk mounted in eyeless needles, and after completion the catheter is withdrawn, and the chest closed, after re-expansion of the lung without drainage.

After operation the baby should be nursed in an oxygen tent, and an intravenous infusion of 50-100 ml of fresh blood given. Sudden and dangerous attacks of cyanosis may occur and will demand immediate aspiration of the pharynx. Feeding by mouth starting with 10 per cent dextrose in water may be instituted in twenty-four hours and with a suitably diluted milk preparation in forty-eight hours.

The deformity in Type 2 varies in extent from a thin membrane to a gap of some inches or even absence altogether of the lower segment. When it has been found impossible to anastomose the two ends the following procedure has been adopted. The upper segment is brought out through the left side of the neck immediately above the clavicle to form an oesophagostomy, and the lower segment brought down into the abdomen and through the abdominal wall to form a gastrostomy. If the child survives and eventually thrives, one of the various methods of fashioning a new oesophagus is undertaken.

CARDIOSPASM

Consequent upon the perfection of the technique of trans thoracico exposure of the lower oesophagus and cardiac end of the stomach, the old principle of oesophageal gastrostomy for cardiospasm, formerly performed through the abdomen, has experienced a revival only to illustrate again its shortcomings and to result in recession into oblivion. Barrett and Franklin (1949) have recorded their experience with nineteen patients upon whom this operation was performed. The marked benefits the operation conferred during the first six months or so following operation flattered only to deceive. Nearly all of them developed symptoms after this short respite usually due to oesophagitis. The same authors treated six other patients by dividing the cardia through all coats in a longitudinal direction and suturing the resulting incision transversely with equally unsatisfactory results.
These experiences together with those of other surgeons serve to vindicate anew the claim of Heller's operation as the one of choice. But in order to secure the best results, Heller's operation should be done at an early date, especially if permanent relief of symptoms is not obtained after two to three attempts to cure by means of a Nuss hydrostatic dilator. Heller's operation can readily be performed through the abdomen if the same exposure of the cardia is made as for vagotomy. Some surgeons have noted in making the aosophageal division an encircling fibrotic band in the submucosa and have expressed the opinion that the existence of such a band may be a causal factor.

Mega Æsophagus

The development of a dilated and often tortuous aosophagus (mega Æsophagus) may be a very insidious process, and the patient may not for some years complain of symptoms sufficiently marked for him to seek medical advice. Sooner or later, however, aosophagus will probably supervene and relief from the symptoms is sought. Alternatively, it may follow esophagospasm for which conservative treatment has been continued overlong, or failure of Heller's or other types of operation. In some such cases, as Pappell (1950) has shown, aosophagal motility may be impaired or lost. There is some reason to believe that this dystonia may be the cause rather than the result of mega aosophagus. No local operation at the cardia is likely permanently to relieve this condition; and consideration in cases in whom symptoms are severe and persistent should be given to the operation suggested by Dubreus (1930) and by Wangensteen (1931) in which the lower end of the aosophagus and the proximal end of the stomach as far as the pyloric antrum are resected, with end to end suture of the aosophagus to the residual stomach. As both vagus nerves are divided, Wangensteen recommends that after the anastomosis an extra mucosal pyloroplasty should be performed to anticipate subsequent hold up at the pylorus.

Carcinoma of the Æsophagus

It is becoming, more than ever clear that cancer of the terminal aosophagus and proximal stomach and cancer of the mid and upper aosophagus are attended by such distinctive individual problems that they should be considered as separate clinical entities. The treatment of the former by radical or palliative surgery constitutes a very great advance upon the now obsolete method of treatment by gastrostomy and irradiation. The results of surgery for
cancer in the upper oesophagus are however, despite notable advances in technique so disappointing that many will be prepared to accept the view of Scandinavian workers that, for cancer in this situation, oesophagectomy cannot compete with radiation therapy and intubation as a means of affording greatest relief to the largest number of patients (Pack 1948)

Santa and Michaud's (1951) study of 300 patients with cancer of the oesophagus seen during the preceding three years gives an illuminating picture of the present position as experienced at a famous continental clinic and should be studied in the original. In 148 patients even exploratory operation was contra indicated, in 25 inoperability was revealed at operation. One hundred and seventy nine were explored by thoracotomy. Of these, 105 could not be resected and were treated by a palliative operation. Resection was performed on the remaining 74. Fifty one had a carcinoma of the lower third and the operative mortality was 31 per cent. 15 had a carcinoma of the middle third and the operative mortality was 60 per cent. In 5 the growth was cervical, 2 patients surviving operation.

Cancer of the Terminal Oesophagus and at the Cardia

Burgess and others (1951) after an investigation of post mortem findings of 88 patients who had died with carcinoma of the oesophagus noted (a) that in at least half the specimens the lesions extended at least 1 cm in the wall of the oesophagus above the visible tumour. In a few instances this intramural spread extended for 2 to 4 cm. (b) That both squamous celled carcinomas and adenocarcinomas affecting the lower 8 cm of the oesophagus freely metastasized to lymph nodes below the diaphragm. There was no significant difference in behaviour in this regard between the two types.

The aim of the radical operation irrespective of preoperative biopsy findings should therefore be section of the oesophagus well above the visible growth and removal of the gastric lymphatic field. This entails including the spleen and the tail of the pancreas among the parts removed a point stressed by Allison (1951). There is some doubt as to whether the whole stomach should be removed followed by oesophago jejunostomy or only the proximal two thirds or so followed by oesophago gastrostomy (Fig. 17). Certain disadvantages are inherent in both methods (see page 82).

Approach The approach should be through an abdomino thoracic incision removing the eighth or ninth rib as far back as its angle. The abdominal incision should cross the mid line, so that the left
rectus is completely divided. There is no advantage whatsoever in attempting to do this operation through an incision confined to the chest or through one in which the thoracic incision is skimped. The essence of success in this difficult procedure is wide exposure which can only be obtained through a lengthy incision. The immediate danger to the patient is not increased thereby, but his prospect of survival is enhanced. It is not necessary to perform

Fig 1: Operation for cancer at the cardia. Choice lies between total and subtotal gastrectomy. Diagram to show extent of removal in either operation

(after Dr. J. W. Kinnaird, 1907. By permission of J. North American)

a preliminary laparotomy before opening the chest to determine operability for if the growth is too advanced for radical surgery it should be short circuited either by a gastro-oesophagostomy or a jejunooesophagostomy for which the same exposure is needed as for resection.

Reconstruction If the proximal half of the stomach only is removed, the choice lies between implanting the residual oesophagus into either the stomach or the jejunum.

The former is easier in accomplishment but has certain dis
advantages, the chief among them being the danger of reflux oesophagitis. As both vagi are cut there may also be some danger of the development of delay in emptying of the residual stomach. Braun (1953) is of the opinion that gastro-oesophagostomy may lead to dilatation of the oesophagus if the pylorus is still permitted to function.

The alternative of oesophago-jejunostomy has however, also marked disadvantages for it is more likely to be followed by severe malnutrition and by persistent diarrhoea complications which, of course have to be accepted if the condition necessitates total gastrectomy.

Oesophago-jejunostomy The success of operation depends on an efficient anastomosis more than on any other single factor. The choice lies between an end to end anastomosis to a jejunal limb and end to side to a jejunal loop.

Anastomosis of a limb of jejunum is the more attractive technical procedure but the safety of the anastomosis is jeopardized by two factors —its nakedness and the reduced vitality of the jejunum. End to side anastomosis to a loop is far more secure. Difficulty may be met in bringing a loop to the oesophagus without tension. Usually this can be overcome by Sweet’s manoeuvre—division of one of the main vascular bundles of the loop near its origin from the superior mesenteric vessels (Fig. 18A).

The posterior aspect of the suture line may be sealed off by suturing the jejunum to the parietal pleura. The anterior line may

Fig. 18 Oesophago-jejunostomy showing Sweet’s method of increasing the mobility of the jejunal loop (A) Jejunoojejunostomy (B) and Roscoe Graham’s manœuvre designed to obtain greater security at the oesophago-jejunal anastomosis (C).
be guarded by rolling over the proximal limb of the loop, as suggested by Roscoe Brucham (1915) (Fig. 18 b). In all cases a jejuno jejunostomy must be performed to preserve the anastomosis from the duodenal and pancreatic secretions. This step will greatly enhance the probability of spontaneous healing should a fistula occur. Although the mortality of the operation is still high—probably in most clinics in the region of 50 per cent—a number of four and five year survivals are recorded. Franklin and Shipman (1952) have six patients living between two and four years. Allison (1953) has one eight year and eleven five year survivals, and Tanner (1953) five five year survivals. Sweet (1954) has recorded the surprisingly low operative mortality of 11.6 per cent with a 17.7 per cent five year survival rate of those who recovered from operation.

Judged from the standpoint of long term survival alone there may be cause for discouragement, but if the palliative virtue of the operation be also taken into consideration it may be claimed that the surgery of cancer at this site has made a notable, if not a triumphant advance within the last decade.

For the benefit of those who may doubt this contention the figures of Dickson (1951) may be quoted. Between 1935 and 1948 55 of a total of 103 patients with aosophageal carcinoma had a palliative gastrostomy. Twenty-three (42 per cent) died in hospital after an average survival of twenty-three days. Of 27 who left the hospital alive the average survival time was a little over seven months. It should be added that for this period the patient suffered the discomfort of a gastrostomy and that the pleasure of feeding by mouth was denied to him.

Palliation. The best palliative for the unresectable growth is either an aosophageal gastrostomy or an aosophageo jejunostomy, the latter being indicated for infiltrating carcinoma at the cardia which will prevent freeing the stomach sufficiently to bring it up into the chest to a point above the growth. If an aosophageo jejunostomy is contemplated, the Roux operation takes precedence over the loop operation for it will generally be found impossible to bring a loop up to a sufficient height with the stomach in situ.

The operation is analogous in its effect to gastroenterostomy for inoperable carcinoma obstructing the pylorus though it is a far more extensive procedure and the mortality very much higher.

Cancer of the Mid and Upper Æsophagus

The role and scope of surgery for cancer within the vicinity of the aortic arch must still be regarded as ill defined and as yet unsatisfactory for the following reasons —
1 Eradication of any extra œsophageal spread, and of the immediate lymphatic field are impossible

2 The mortality of radical excision is, in most hands, excessive

3 To bring the stomach up to the œsophagus above the level of the aortic arch leaves the survivor with a complete mediastinal stomach, which is not compatible with any reasonable degree of comfort

4 Palliation by high gastro œsophagostomy if the growth is found at exploration to be 'unresectable' cannot be compared from the patient's standpoint, with the results of intubation by a Souttar's tube

In an effort to surmount these problems there is an increasing tendency to use a right as opposed to a left thoracotomy, as originally recommended by Lewis (1946), and a return to extra mediastinal œsophagoplasty both as a palliative and as a replacement after total œsophagectomy

Right Thoracotomy The great disadvantage of operation through a right thoracotomy is that it necessitates two separate incisions—abdominal and thoracic. Its great advantage over left thoracotomy is that the growth is far more easily removed from the right side, because the surgeon is not embarrassed during this approach by the aorta. Increasing experience and improved pre operative care have enabled the operation to be undertaken in one stage, instead of the two stage procedure practised by Lewis in his early cases. The stomach is first mobilized through a mid line incision and the œsophagus freed by blunt dissection as far into the chest as possible after division of the peritoneum surrounding the hiatus. The abdomen is closed and the patient turned on to the left side (or on to the front—Sellors, 1952). The chest is entered through a long incision in the 7th intercostal space or after resection of the 7th or 8th rib. The azygos vein lies in the pathway to the growth and is divided between ligatures. After mobilization of the growth by sharp dissection the stomach is pulled up into the chest through the right crus. The œsophagus with a wedge of cardia is now severed, and the resulting opening in the stomach closed. An œsophago gastrotomy is then commenced well above the growth and the œsophagus removed after the posterior layers of the anastomosis are completed

Criticism has been levelled against the right sided operation on the grounds that after completion of the abdominal part of the operation, thoracotomy may disclose that the growth is inoperable. Mathewson and Cohn (1950) however insist that it is nearly always possible to remove the growth even though the cancer is not com
pletely eradicated from the chest and the operation can be continued as a palliative procedure.

Extra mediastinal Oesophagoplasty D Allamies and Brunet (1930) draw attention to the trend in many clinics towards extra mediastinal aosophagostomy followed by total thoracic aosophagectomy for mediastinal cancer. The great drawback to the method from a technical standpoint is the inability to the develop

![Diagram of Oesophagus and Colon](image)

Fig 19 Subcutaneous aosophageoplasty using the right colon and terminal ileum

(By courtesy Dr J Lefargue and the Ed for Liefdenz Chirurg und)

![Diagram of Preparation of Ileum](image)

Fig 20 Preparation of ileum for extra-sternal aosophageoplasty. Straight dotted line indicates sites for division of ileum and vessels curved dotted lines for division of secondary branches if additional length is needed

Lefargue and his colleagues (1931) perform a pre-sternal operation using the right half of the colon and the terminal ileum the latter being anastomosed to the oesophagus in the neck and the former to the duodenum (Fig. 19). The first stage in the operation is a median laparotomy at which the xiphisternum is removed. The right colon is freed as for a hemicolecotomy after detaching the omentum from it. The ileum is divided 6-8 m from the cæcum and the blood supply from the arcade is preserved the ileocolic artery being ligatured near its origin. The transverse colon is then divided near its centre, and both ends closed. An ileo colostomy is then per
formed. The end of the colon is now implanted either into the stomach, duodenum, or upper jejunum, the last named being preferred. A subcutaneous tunnel is prepared between the sternum and the skin in the direction of the left clavicle, and the abdomen closed. The terminal ileum is brought out into the neck and anastomosed to the cervical esophagus after an interval of some days.

Robertson and Sergeant (1950) have developed a method in which

![Image](image-url)

Fig 21 Retrosternal jejunal esophagoplasty. Barium swallow X-ray five weeks after operation.

(By courtesy Drs. R. Robertson and T. P. Sergeant and the Editor Journal of Thoracic Surgery.)

A long limb of jejunum, prepared after the manner popularized by Yudin is brought up into the neck through a tunnel immediately behind the sternum. The steps of the operation are briefly as follows:

A left paramedian incision is made, and a limb of jejunum prepared division being made just below the flexure (Fig 20). The length required is ascertained by measuring the distance between the thyroid cartilage and the ligament of Treitz.

The anterior mediastinum is then entered from the abdomen and the diaphragm separated from the costal margin on either side for
2 inches from the mid line. Simultaneously the lower cervical oesophagus is exposed by a surgeon working from above and divided the distal end being invaginated. The anterior mediastinum is entered from above and a passage made by blunt dissection simultaneously from above and below keeping close to the sternum. The limb of jejunum is carried up through the tunnel and anastomosed to the cervical oesophagus and at the same time the abdominal part of the operation is completed by anastomosis in 1 of the divided jejunum. A gastrostomy is made before closure. The post operative result is illustrated by Fig. 21.

This method is particularly suited to patients with simple corrosive structures of the oesophagus differing from Ladin's operation in being intrathoracic and isoperistaltic. The operation is also being applied to the treatment of mid oesophageal cancer, the latter being removed through a right thoracotomy some three weeks or so after completion of the oesophagoplasts.

It is as yet too early to assess the full value and application of these methods but they are bound to command attention and future developments will be awaited with interest.

References

Congenital Atresia of the Oesophagus

BELSEY R E R and DONNISON C P 1960 Brit med J ii 341
DONNELLY H 1960 Lancet ii 606
FRANKLIN R H 1947 Brit med J ii 47
HAIGHT C F 1944 Ann Surg 120 629
HARRUT C 1943 Personal Communication
LADD W F 1944 Ann Surg 120 612
LADD W F 1940 Pediatrives 8 9
POTTES W J 1940 Med Clin N Am et 24 24
Vogt E C 1929 Amer J Roentgenol 22 463

Cardiospasm

ALLISON P R 1941 Surg Gynae Obstet 92 410
BARNETT R R and FRANKLIN R H 1949 Brit J Surg 37 194
DELOVIER L 1940 Acta gastrinaent belg 13 940
WANGENSTEEN O H 1951 Ann Surg 134 301
WEITZ H 1941 Arch Neur Appar Dig 40 201

Carcinoma

ALLBRIGHT F F Jr and GIBBON J H Jr 1930 J Tenn med J 53 811
ALLISON P R 1940 Lancet ii 91
ALLISON P R 1951 Surg Gynae Obstet 92 419
ALLISON P R 1953 Personal Communication
BRAIN R H F 1953 Proc Roy Soc Med 46 438
REFERENCES

DICKISON J C 1951 Canad med Ass J 65 30
DAULLAINES F and BANZET P 1900 Sem Hop Paris 26, 1739
DAURUE A L 1933 'A Practice of Thoracic Surgery' London Arnold
FRANKLIN R H and SHIPMAN J J 1952 Brit med J i 947
GRAHAM R R 1945 Brit J Surg 33 166
HARRISON A W and PICKETT W H 1959 Surgery 28 771
KIRKLIN J W and CLAGGTT O T 1951 Surg Clin N Amer 31, 69
LAFARGE P DUFOUR R and CABANIS H 1901 Bordeaux chir fasc 11
LEWIS I 1946 Brit J Surg 34 18
MATHEWSON C JR and COHN R 1950 Arch Surg 61 229
OSCHNER A DE BAKKE M and DE CAMP P T 1949 Ann Otol 58 1171
PACK G T 1948 Surgery 23 807
ROBERTSON R and SARGEANT T R 1950 J Thoracic Surg 20 689
SELLORS T H 1952 Ann R Coll Surg 11 229
SANTY P and VICHAUD P 1941 Arch Mal Appar dig 40 932
SWEET R H 1952 Surg Gynec Obstet 94 46
TANNER N C 1953 Personal Communication
CHAPTER VII
DIAPHRAGMATIC HERNIA

HAROLD C. EDWARDS

The diaphragm is an integral part of the muscular envelope of the abdomen subject to the same stresses and strains and to the same slow despoiling of its integrity and function by the passage of years as the external abdominal walls and similarly disposed to be the site of herniation of abdominal contents. The diaphragm shares also with the abdominal wall inability to congenital herniation resulting from maldifferentiation but here consideration will be given only to acquired herniation.

The most vulnerable area in the diaphragm is at the esophageal orifice and this bears comparison with that most vulnerable of areas in the external abdominal wall—the internal ring. Both the esophageal hiatus and the internal ring transmit structures and both rely upon the integrity of the musculature to guard against other abdominal structures being forced through the aperture by intra-abdominal pressure. The advance of years into middle age and beyond is associated with two predisposing causes of herniation—

(a) Degeneration—impuriment in muscular power which affects alike the whole body musculature and the deposition of fat (multiple pregnancies play a big part here).

(b) The tendency to increasing strain upon the weakening wall of the abdomen by common disorders of middle age—persistent cough chronic constipation urinary obstruction in men.

This progressive reciprocal action—the wearing out of muscular power and the increasing tendency to strains upon the abdominal wall explain why the liability to herniation increases with age. Indeed it is probable that one only has to live long enough to acquire a hernia—either diaphragmatic or inguinal or both.

Mechanism at the H hiatus

As with the internal inguinal ring, the mechanism which safeguards the hiatus is not fully understood. Allison (1952) to whom we owe so much for his elucidation of many of the problems asso
ciated with this region of the body, believes that competence of the cardia depends upon the intrinsic circular muscle fibres at the gastro oesophageal junction and the oblique angle of entry of the oesophagus into the stomach. The sling of muscle formed by the right crus of the diaphragm suspends the lower end of the oesophagus, in very much the same way, according to Allison, as the pubo rectalis suspends the rectum (Fig 22). Allison stresses this factor very much in his technique for the repair of a hiatus hernia, the success of which depends, in his view, very largely upon the reconstruction of this sling of muscle.

Collis (1953), as a result of dissection upon cadavers of the musculature of the hiatus which show great variations in anatomy, believes that the repair of the hernia should be undertaken per abdomen except in the obese subject, for whom a thoraco abdominal incision is advocated.

The Cardia

Though we are ignorant of the exact mechanism at the cardia by which reflux into the oesophagus is normally prevented, one thing appears certain—that this mechanism fails to work when the cardia comes to occupy a position in the thorax where it is subjected to an alien set of environmental forces. Thus it is that in hiatus hernia in which the cardia is involved reflux of the gastric secretions into the oesophagus is a common, if not a constant, sequel like the small intestine, which so often suffers after gastro enterostomy, the oesophagus has little defence in its make up against the irritating and sometimes erosive activity of the gastric juice and persistent though intermittent bathing of its unprotected wall in this medium leads to oesophagitis. The degree of damage will vary from a mild oesophagitis to a severe inflammation extending high up into the oesophagus, and on occasion to the development of a typical
peptic ulcer subject to the characteristic complications of bleeding, perforation and deformity. It is probable that the magnitude of the damage the gastric juice will do is directly proportional to its degree of acid and enzyme potential though Allison is of the opinion that esophagitis is not necessarily due to the acid component but may be caused by enzymatic action.

Hiatus Hernia

Hiatus hernia is easily the commonest non malignant disorder of the gastro esophageal junction. There are two distinct types of herniation—the sliding hernia in which the cardia moves up into the thorax and the para esophageal in which the cardia remains in its normal situation and the fundus passes through the hiatus anterior to the esophagus rolling at the expense of the greater curvature. Occasionally a secondary para esophageal hernia may complicate a sliding hernia. The sliding type is easily

![Diagram of the anatomical relations of sliding hiatus hernia. Note the stretching of the peritoneal reflection and the phrenoesophageal ligament.](image)

the more common of the two. Of 365 hiatus herniae Allison (1951) found 352 sliding and 33 para esophageal or mixed.

Sliding Hernia The cardia is normally mobile the degree of mobility varying in different subjects and at different ages. Under conditions of stress it may make an excursion into the thorax to return when normality is reestablished. Thus in pregnancy displacement of the cardia into the thorax is a probable cause of the heartburn which is so frequently a symptom especially in the later stages. In extreme flexion of the body in the stooping position especially if combined with rotation of the trunk, radiology can demonstrate in the apparently normal a short excursion upwards of the cardia.

Such a natural mobility will of course predispose to permanent herniation the cardia eventually becoming lodged in the thoracic cavity together with a portion of the stomach. As with herniation elsewhere, once the condition is established it is liable to be progressive.
At first the length of the oesophagus is not altered, but in due course shortening will take place. This shortening will become irreparable if the oesophageal wall becomes contracted by scar tissue due to oesophagitis or peptic ulceration.

This secondary fixed shortening of the stomach due to scar tissue contraction is distinct from that rare condition of congenital short oesophagus, in which the shortening is the predisposing cause of the oesophagitis. It is not, however, always possible to distinguish between the two in clinical practice. Very rarely, the presence of heterotopic gastric epithelium in the wall of the oesophagus may be the initiating factor in ulceration followed by shortening and herniation. The symptoms associated with sliding hernia are usually mild in degree, due to the presence of the stomach in the thorax and consist of intermittent attacks of epigastric discomfort with a sense of fullness and belching after meals simulating closely the symptoms of chronic cholecystitis. The more serious symptoms are due to reflux of gastric juice. At first this will cause heartburn and eructations, particularly at night when the patient is recumbent. The severity will increase with the degree of oesophagitis and if a gastric ulcer arises pain and dysphagia may be extreme. Hypochromic anaemia is a frequent association.

Para Oesophageal Hernia. The body of the stomach passes through the hiatus in front of the cardia which (unless the hernia is a development secondary to a sliding hernia) remains in situ. The amount of stomach which passes through is variable. Though this is usually limited to the fundus, the tendency is always towards increase in size. The stomach rotates at the expense of the greater curvature so that it comes to lie upside down in the thorax (Fig 24). Rarely the whole stomach may be permanently lodged in the chest and occasionally a portion of the transverse colon. Reflux of gastric contents into the oesophagus does not occur in para oesophageal hernia so that it does not become complicated as does the sliding hernia by oesophagitis, ulceration.

Fig 24. Anterior wall of the stomach rolled up into the sac to form a para oesophageal hernia.
or shortening of the œsophagus. The symptoms caused are due to the presence of the stomach or part of it, within the thorax, and their degree of severity will depend upon the size of the hernia and the degree of constriction at the neck of the hernia. The main features are recurrent fullness after meals, eructations of wind, tightness in the chest, shortness of breath, retrosternal pains, like cardiac pains, anaemia from gastric erosions due to congestion, and very occasionally strangulation of the intrathoracic portion of the stomach. The symptoms may simulate most of those caused by the more common upper abdominal lesions any of which may co-exist and may also closely simulate those of coronary disease.

Diagnosis

The diagnosis of both types of hernia can be made radiologically although the distinction between the two by radiological means alone is not always possible (Johnstone, 1951).

Treatment

Sliding Hernia. In mild cases of heartburn and dyspepsia associated with a small sliding hernia, relief can be obtained from alkalis and sleeping in a propped up position. In the more severe cases operation with reduction of the hernia, removal of the sac, and narrowing of the hiatus by sewing together the crura behind the œsophagus may be performed either through the abdomen or the chest according to the individual preference of the surgeon.

When the hernia is of large size and associated with fixed shortening of the œsophagus due to scarring resulting from reflux œsophagitis the problem of cure is a complex one for the shortening of the œsophagus will prevent reduction of the cardia. Excision of the lower end of the œsophagus and the herniated portion of the stomach with œsophago-gastrostomy is likely to be followed by a recurrence of reflux œsophagitis or ulcer. The operation of choice is to resect the diseased area of the œsophagus and replace the stomach after turning in and oversewing the cardia into the abdomen. The jejunum is then divided 2 or 3 inches below the ligament of Treitz the distal segment brought up to the œsophagus and an end to end anastomosis made between the two. The proximal end of the jejunum is then implanted end to side into the segment brought up to the œsophagus. As both vagus nerves are divided it is expedient to perform an extra mucosal pyloroplasty to ensure that the stomach will empty.

Para œsophageal Hernia. Operative reduction of a para œsophageal hernia should normally be undertaken if the symptoms are
Harrington (1948) suggests that the operation will certainly be required if one third of the stomach or more has entered the thorax. In the rare event of the presence of part of the transverse colon in the sac, the operation should not be delayed because of the danger of strangulation. In the old and infirm who are unlikely to withstand the radical operation considerate if not complete relief from symptoms can be obtained by division of the left phrenic nerve. Thus by paralyzing the left diaphragm causes relaxation of the muscular wall of the orifice thus reducing the danger of constriction of the stomach at the neck of the hernia. It is tantamount to paralyzing the internal oblique muscle of the abdomen in irreducible inguinal hernia.

Operative Approach

Though many surgeons including Harrington (1948) and Collis (1953) prefer the abdominal route, the weight of evidence seems to point to the transthoracic approach (made after resection of the eighth rib) as the method of choice for most cases. Exposure of the hiatus is better and enables greater precision in operating. Allison stresses the great importance in the repair of sliding hernia of

Figure 2a (a) Diagrammatic representation of the right crus of the diaphragm split to form the esophageal hiatus. (b) Represents the further splitting of the crus when a hiatus hernia occurs. (c) Restoration of the hiatus by light suturing of crural fibres behind the esophagus.

Figure 2b The normal fascial and peritoneal reflection at the diaphragmatic hiatus. The fascia on the deep surface of the diaphragm is reflected on to the esophagus as the phreno-esophageal ligament and fascia propria. Vessels and lymphatics lie between this and peritoneal reflection.
clearing the muscle fibres from the right crus, which sweep round to
the left to form the posterior boundary of the hiatus—fibres which
are displaced by the hernia and which should be incorporated in the
repair if a functional hiatus is to be reconstituted, this can be more
easily accomplished from above (Figs 25 and 26). Other points are
that the phrenic nerve may be temporarily blocked with novocaine to
facilitate diaphragmatic repair and finally, should there be any
adhesions between the stomach and the hernial sac they are more
readily appreciated and divided. Boyd and Classen (1931), who have
used both approaches for different cases extensively, are of the
opinion that the recurrence rate morbidity, and mortality are less
when the thoracic route is used and O’Neill (1951), who used the
abdominal and thoracic routes almost equally in fifty-five cases
showed his recurrence rate following the abdominal route to be
27 per cent and the mortality 6.5 per cent as opposed to 8 per cent
and 8 per cent respectively for the thoracic route.

Peptic Ulcer of the Oesophagus

Primary peptic ulcer of the oesophagus may rarely develop in
the lower oesophagus—primary in the sense that it is not caused by
reflux due to acquired deficiency of the cardiac mechanism such as
occurs in sliding hernia and of course after oesophago-gastrostomy.
Formerly it was thought that islands of ectopic gastric mucosa lying in
the oesophagus might be responsible for such ulceration and Barrett
(1930) in his masterly review of the problem elaborates the view
that the cause lies in the fact that typical gastric epithelium may
line the oesophagus for a variable distance extending even into the
cervical oesophagus perhaps and in unbroken continuity with that
of the stomach itself. There is present in effect a mediastinal
stomach the oesophagus ending from the mucosal viewpoint where
its stratified epithelium ends. Most of such cases Barrett thinks
are in truth examples of congenital short oesophagus.

The treatment for primary peptic ulceration is to dilate the
associated narrowing at oesophagoscopy and to attempt to maintain
a normal oesophageal calibre by daily passage thereafter of a mercury
bougie. As there is no dependable surgical cure an viable operation
should be considered only for those in whom the condition proves
completely intractable. Simple excision of the lower end of the
oesophagus followed by gastro-oesophagogastrotomy is likely to fail because
of the danger of recurrence due to reflux. If it should be attempted,
the anastomosis should be made at the level of the aorta for it is
said that the oesophagus above this level is more resistant to reflux
ulceration than it is below it (d’Abrue 1953) Wangenstein (1949)
refers to subtotal gastrectomy to diminish acidity. A further alternative is oesophageo jejunostomy (see p 94)

References

Diaphragmatic Hernia

ALLISON P R 1931 Surg Gynec Obstet 92 419
ALLISON P R 1952 Gastroenterologia 78 333
BOLD D P and CLASSEN J N 1941 Surg Clin N Amer 31 813
COLLIS J L 1943 (Unpublished)
HARRINGTON S W 1948 Surg Gynec Obstet 86 735
JOHNSTONE A S 1951 J Fac Radiol 3 52
JOHNSTONE A S and WOOLER C H 1949 Post Grad med J 25 203
ONEILL J W 1951 J Int Coll Surg 16 374

Peptic Ulcer

BARRETT N R 1950 Brit J Surg 38 175
D'ABREU A L 1953 A Practice of Thoracic Surgery Arnold London
WANGENSTEEN O H 1949 Surg Gynec Obstet 88 560
clearing the muscle fibres from the right crus which sweep round to the left to form the posterior boundary of the hiatus—fibres which are displaced by the hernia and which should be incorporated in the repair if a functional hiatus is to be reconstituted, this can be more easily accomplished from above (Figs 25 and 26). Other points are that the phrenic nerve may be temporarily blocked with novocaine to facilitate diaphragmatic repair and finally should there be any adhesions between the stomach and the hernial sac they are more readily appreciated and divided. Boyd and Chissen (1951) who have used both approaches for different cases extensively, are of the opinion that the recurrence rate morbidity and mortality are less when the thoracic route is used and O’Neill (1951), who used the abdominal and thoracic routes almost equally in fifty-five cases showed his recurrence rate following the abdominal route to be 27 per cent and the mortality 0.5 per cent as opposed to 8 per cent and 8 per cent respectively for the thoracic route.

Pepitic Ulcer of the Oesophagus

Primary pepitic ulcer of the oesophagus may, rarely develop in the lower oesophagus—primary in the sense that it is not caused by reflux due to acquired deficiency of the cardiac mechanism such as occurs in sliding hernia and of course after oesophageal gastrostomy. Formerly it was thought that islands of ectopic gastric mucosa lying in the oesophagus might be responsible for such ulceration and Barrett (1950) in his masterly review of the problem elaborates the view that the cause lies in the fact that typical gastric epithelium may line the oesophagus for a variable distance extending even into the cervical oesophagus perhaps in an unbroken continuity with that of the stomach itself. There is present in effect a mediastinal stomach the oesophagus ending from the mucosal viewpoint where its stratified epithelium ends. Most of such cases Barrett thinks are in truth examples of congenital short oesophagus.

The treatment for primary peptic ulceration is to dilate the associated narrowing at oesophagoscopy and to attempt to maintain a normal oesophageal calibre by daily passage thereafter of a mercury bougie. As there is no dependable surgical cure available operation should be considered only for those in whom the condition proves completely intractable. Simple excision of the lower end of the oesophagus followed by gastro-oesophagostomy is likely to fail because of the danger of recurrence due to reflux. If it should be attempted the anastomosis should be made at the level of the aorta for it is said that the oesophagus above this level is more resistant to reflux ulceration than it is below it (d’Abrue 1953) Wangenstein (1949).
The Surgical Treatment of Gastric Ulcer

Conservative partial gastrectomy remains the operation of choice, and the indications for its application have not changed, except that in many clinics where the mortality of the operation
CHAPTER VIII
THE STOMACH AND DUODENUM
HAROLD C. EDWARDS

SURGICAL TREATMENT OF PEPTIC ULCER

The surgical treatment of gastric ulcer remains that of excision of the stomach from a point immediately above the ulcer, conserving as much of the stomach as is consistent with obtaining a satisfactory reconstruction. The rationale of the surgical treatment of duodenal ulcer is to obtain a permanent reduction in the quantity of acid secretion.

This difference in motif is based upon known differences in etiology. James and Pickering (1948) have recently drawn attention to the latter by a series of controlled estimations of the pH of the gastric contents under conditions as near as possible to normal. All subjects upon whom the investigation was made received four meals during the day, with milk at regular intervals between meals. Samples of the contents of the stomach were obtained at half-hour intervals during the day and at hourly intervals at night and their acidity determined by an electrometric method.

(a) In duodenal ulceration, the curves of intragastric acidity showed in general a higher level of acidity, a less conspicuous neutralization after food, and the maintenance of higher acidities at night after food had disappeared from the stomach.

(b) In gastric ulcer, the most striking deviation from normal in the curves of intragastric acidity was the fall to or near neutrality during that part of the night when food had left the stomach in 16 of 23 gastric ulcer patients. There was evidence that neutralization of gastric contents after food had left the stomach was due to cessation of acid secretion.

The conclusions were that the evidence was consistent with the hypothesis that duodenal ulcer is caused by the action of abnormal degrees of acidity over abnormally long periods of time but inconsistent with the hypothesis that gastric ulcer is due to this cause. These observations confirm, in fact that gastric and duodenal ulcers are diseases of different etiology.
has by dint of long practice become low, there is an increasing tendency to resect the stomach in acute perforation instead of limiting the operation to closure of the perforation.

There is however a pronounced increase in popularity—or perhaps one should say return to favour—of the Billroth I type of reconstruction as opposed to the Billroth II. The Billroth I type of reconstruction is a very simple matter to perform after partial gastrectomy in most cases of chronic gastric ulcer especially in women, and has the following advantages over the Billroth II operation—it is less disturbing to the patient; it is more physiological in the sense that gastric contents enter the duodenum and not the jejunum; it is claimed to be freer from post-prandial disturbances.

As the late Peter McEvedy showed a single layer of closely placed interrupted sutures is completely reliable for the posterior gastro-duodenal suture line and this simplification in technique diminishes considerably the amount of duodenal wall needed for the anastomosis and reduces the risk of creating too narrow a stoma. Fig 27 shows original drawings which McEvedy had prepared especially for publication here.

Lang Stevenson (1951) has designed a set of clamps which in the author's opinion facilitates the operation (Fig 28 (a), (b) and (c).
has by dint of long practice become low, there is an increasing tendency to resect the stomach in acute perforation, instead of limiting the operation to closure of the perforation.

There is however a pronounced increase in popularity—or perhaps one should say return to favour—of the Billroth I type of reconstruction, as opposed to the Billroth II. The Billroth I type of reconstruction is a very simple matter to perform after partial gastrectomy in most cases of chronic gastric ulcer especially in women and has the following advantages over the Billroth II operation—it is less disturbing to the patient; it is more physiological in the sense that gastric contents enter the duodenum and not the jejunum; it is claimed to be freer from postprandial disturbances.

As the late Peter McEvedy showed a single layer of closely placed interrupted sutures is completely reliable for the posterior gastro-duodenal suture line and this simplification in technique diminishes considerably the amount of duodenal wall needed for the anastomosis and reduces the risk of creating too narrow a stoma. Fig 27 shows original drawings which McEvedy had prepared especially for publication here.

Lang Stevenson (1951) has designed a set of clamps which in the author's opinion facilitates the operation (Fig 28 (a) (b) and (c).
The Surgical Treatment of Duodenal Ulcer

The object of surgery is to secure a permanent reduction of real secretion to a level low enough to discourage further ulceration either recurrent or secondary (anastomotic). Gastro-enterostomy was discarded because it failed to secure such a reduction and was replaced by wide resection which has achieved this objective. Revulsion against performing so mutilating an operation upon patients especially young patients, in whom the ulceration though painful and intractable to medical treatment is small in degree led to the introduction early in the last decade of two alternative methods of obtaining a reduction in reality. These were physiological gastrectomy in which the stomach is deprived by multiple ligatures of most of its blood supply and vagotomy.

Physiological gastrectomy made little appeal and has been largely discredited but vagotomy, either alone or in conjunction with a drainage operation such as gastro-enterostomy remains in the field as a possible alternative procedure to resection.

Partial Gastrectomy for Duodenal Ulcer

Most surgeons are in agreement that partial gastrectomy performed for the cure of duodenal ulcer should be of the Billroth II type. Reconstruction after resection may be antecolic or retrocolic with or without a Lake Hoffmeister valve in either instance. Though there is no reliable evidence that any one method is superior to all others, the author's preference is for the retrocolic operation with fashioning of a valve. Of greater importance is the question of the amount of stomach which should be removed. The late Hedley Visick (1948) was of the opinion that both for gastric and duodenal ulcer the resection should be taken up as far as (but not including) the very first vasa brevia a procedure which he designated Measured Radical Gastrectomy (Fig. 29). He performed this operation on 505 patients with a mortality in the last 430 of 3.7 per cent. A careful follow-up of between twelve years to six months showed no single case of recurrence or secondary ulceration and Visick contrasted this with a 5.3 per cent recurrence rate after one half to two thirds removal and 3.7 per cent recurrence rate after two thirds to three quarters removal.

Pulvertaft (1952) who was associated with Visick in a further review concluded that the extent of resection (i.e. between Visick's operation of M.R.T. and the usual two thirds to three quarters gastrectomy) had only a slight effect upon the overall clinical result, and it is probable that the bulk of surgical opinion is
in favour of the less radical operation i.e. removal up to or including the last vasa brevia.

** Modifications in the Technique of Partial Gastrectomy **

Bilroth I. Recently attempts have been made to compensate for the loss of the stomach by grafting a segment of jejunum (Henley 1952) or of transverse colon (Moroney 1953) between the gastric stump and the cut end of the duodenum after the stomach has been removed.

Henley records having successfully performed his operation on thirty-five occasions and for the following conditions: gastric ulcer (13), removable duodenal ulcer (18), irremovable duodenal ulcer (4), perforation of peptic ulcer (4), remedial for post-gastrectomy syndrome (4) and cancer (2). The immediate results of the procedure have been encouraging. Twenty-seven patients followed up for three months or longer gained an average of 14 lb after operation. Varying from a maximum of 28 lb to a minimum of 2 lb. In all the general condition and appetite were improved and none suffered from dumping symptoms nor from bowel dysfunction (Fig. 30).

Moroney (1953) has recorded the immediate results of 150 patients submitted to the operation of colon replacement for non-malignant conditions together with a few total resections for cancer. For the
Fig. 30 (a) Replacement of removed portion of the stomach by a segment of the ileum. (b) Operation completed.
(By courtesy of Mr. F. A. Heal and the British Journal of Surgery.)
non malignant conditions, which included 82 duodenal ulcers
11 duodenal and gastric ulcers and 27 gastric ulcers, the immediate
post operative deaths amounted to a total of five (Fig 31) Moroney
stresses that the abolition of hyperchlorhydria is an essential
preliminary to colon replacement He has found from his experi
ence that the extent and degree of post gastrectomy nutritional
changes are markedly reduced, and that post gastrectomy symptoms
of the vaso motor type are eliminated altogether In one patient
the operation of colonic replacement was performed five years after

![Diagram of digestive system]

Fig 31 Replacement of the portion of the stomach removed by a
segment of the transverse colon Moroney's operation (see text)
(Re courtesy of Mr J Moroney and the Editor The Lancet)

... gastrectomy, because of post gastrectomy marasmus This patient
gained nearly 3 stones in weight within eighteen months of colon
replacement

Both the Henley and the Moroney operations should be regarded
as experimental until their worth is proven by a five year follow up

Billroth II Dailey and others (1952) recommend an antecolic
gastro jejunostomy, attaching the jejunum to the whole length of
the cut end of the stomach but making the anastomosis only with
its middle third (Fig 32) They claim as a result freedom from any
complication due to angulation of the jejunal limbs O Neill (1952)
practises a similar operation with intent to prevent too rapid emptying of the stomach and thus reducing liability to post gastrectomy symptoms.

Vagotomy

Simple bilateral vagotomy can with a minimum of operative discomfort and with no risk to life secure relief from the symptoms of duodenal ulceration for many years—perhaps permanently. When successful it has no peer amongst other measures either medical or surgical. The trouble is that it is not successful often enough for a lot of patients who have undergone vagotomy develop distressing side effects which rob the operation of all virtue.

Results in terms of percentages reported by different investigators show wide discrepancies. Dragstedt and Woodward (1951) claim 83 per cent good results in 371 cases followed for seven years (in half the operation was combined with gastroenterostomy with only slightly better results). Pollock (1952) found that only 56 per cent of 658 cases followed for four years were satisfactory. The Mayo Clinic figures lie somewhere between these extremes and in recording them Walters and Belding (1951) mention that the operation is becoming increasingly less popular because of the uncertainty of its outcome. In the author's experience of 24 cases followed up for four to five years 9 have proved completely successful in every respect 8 were improved but 7 were failures. It was observed that the best results were obtained in the excessively nervous type of patient in whom duodenal deformity due to scarring was only slight in degree.

The main undesirable side effects of vagotomy are gastric stasis and diarrhoea. In most cases gastric stasis is not of serious import but in a proportion—perhaps one third—of the patients there is obvious clinical evidence of retention of stomach contents the most embarrassing being that of foul eructations. The retention is often associated with diarrhoea and is probably a contributory cause of
the latter for when it is relieved by a short circuit or pyloroplasty, the diarrhoea usually disappears. In mild cases of gastric retention, the administration of urecholine (beta methylcholine chloride) is often beneficial.

Pollock (1952) has confirmed the findings of other workers in observing a significant relation between the degree of acidity after vagotomy and the degree of retention, as illustrated in Table VI.

Table VI — Association of Negative Insulin Test Meal with Severe Gastric Retention

<table>
<thead>
<tr>
<th>Insulin Test Meal</th>
<th>Severe Retention</th>
<th>No Severe Retention</th>
<th>Proportion as %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>26</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>Weakly positive</td>
<td>19</td>
<td>59</td>
<td>32</td>
</tr>
<tr>
<td>Strongly positive</td>
<td>12</td>
<td>81</td>
<td>15</td>
</tr>
</tbody>
</table>

Diarrhoea apart from that associated with gastric retention is rarely severe though it may cause some alarm in the immediate post operative period even if vagotomy has been combined with gastro enterostomy. Frequently the moderate degree of looseness of the bowels which may follow operation is regarded by the patient, previously constipated, as a purposeful achievement of the operation, and he is well satisfied with the new order.

Early post prandial symptoms (dumping symptoms) may follow vagotomy as they do gastro enterostomy and partial gastrectomy but they are seldom severe. Delayed post prandial symptoms—hypoglycaemia—are however, quite common but are not serious and readily disappear if a lump of sugar is taken.

Other recorded sequels to vagotomy are the development of chronic gastric ulcer (Morrissey, 1950) and chronic hypertrophic gastritis. Dysphagia is common during the first few days after operation only rarely does it persist. In one of the author's cases however, a radiological appearance simulating a mild degree of cardiopasm was seen six weeks after operation.

Recurrence after Vagotomy for Duodenal Ulcer

The recurrence rate of ulcer symptoms varies with different observers. Moore (1948) investigated 116 cases of vagotomy for duodenal ulcer and noted 13 recurrences. The essential feature of the recurrent case was a period of complete relief with healing of the duodenal ulcer followed after a long interval by reappearance.
of the ulcer with mild or insignificant symptoms and restoration of a delayed secretory response to insulin. In other words the effect of vagotomy wore off and vagal function became slowly re-established. In Pollock's (1952) series in which the strictest criteria of recurrence of ulcer were used it was shown to be under 4 per cent in 589 patients. Pollock noted a definite relationship between incidence of recurrence and of positive responses after insulin test meals.

Of 507 patients for whom vagotomy plus gastro enterostomy was performed, recurrence of duodenal ulcer was noted only in two (less than 0.5 per cent). Evidence of jejunal ulceration was however, present in six.

Vagotomy in Combination with other Surgical Procedures

Because of the high proportion of failures many surgeons have abandoned vagotomy as an instrument of treatment for duodenal ulcer. Others still recognize its worth in principle and seek to anticipate gastric retention by combining it with a drainage operation with a high degree of success.

Vagotomy combined with either posterior gastro enterostomy—the stoma being placed near the pylorus or with pyloroplasty (Tanner 1950) or hemi pyloromynomectomy (Beattie 1950) give equally good immediate results. Pollock records 88 per cent of satisfactory results after 507 cases of vagotomy and gastro enterostomy and 87 per cent of satisfactory results after 268 patients treated by vagotomy and either pyloroplasty or pylorectomy. It must be noted however that these patients were followed up only for one to two years after operation.

Nearly all published figures record the same high standard of results after vagotomy and gastro jejunostomy for duodenal ulcer. In particular Orr and Johnson (1949) pioneers of vagotomy in this country, speak highly of the cure rate over five years.

More recently (1953) the latter have successfully practised three quarter gastrectomy with vagotomy for cases with an abnormally high degree of acidity hoping thereby to obtain the best of both worlds and the worst of neither. One would need however to be persuaded that this procedure possessed solid advantages over the conservative operations before one accepted it in preference to the latter.

The author has practised vagotomy combined with antrectomy and excision of the ulcer with excellent immediate results but is not as yet satisfied that this more complicated operation possesses any material advantage over vagotomy and gastro enterostomy.
Choice of Treatment for Duodenal Ulcer,

Partial Gastrectomy or Vagotomy and Gastro-enterostomy?

A comparative study on an immense scale of vagotomy and gastric resection has recently (1952) been conducted by the National Committee on Peptic Ulcer of the American Gastroenterological Association. In their report no less than 4,076 patients treated by vagotomy alone or in combination with other surgical procedures, and 1,163 treated by partial gastrectomy, have been analysed. Two of the immediate problems for which the study was undertaken are stated to be —

1. The question as to whether gastro enterostomy and gastric resection are better operations when combined with vagotomy

2. The question as to whether gastro enterostomy supplemented by vagotomy is equal or superior to partial resection alone

The questions were answered thus —

1. In these groups of cases of duodenal ulcer, partial resection alone when more than 70 per cent of the stomach is removed has produced results as good as those produced by partial resection plus vagotomy, with the possible exception of a higher incidence of histamine achlorhydria after the latter operation.

2. Partial resection alone is superior in its results to gastroenterostomy plus vagotomy under the conditions prevailing in the institutions which co-operated in this study.

These opinions should not, however, be taken as the final word, nor would the committee wish them to be so taken. In making his decision as to which operation to practise the surgeon will bear in mind the obvious advantages of preserving the stomach, the removal of which may result in serious nutritional deficiencies (page 117). This advantage is particularly to be observed in the younger patient and especially if he is engaged in arduous work. After experience with both types of operation the author is of the opinion (a) that partial gastrectomy is the operation of choice for the older subject, in whom there is gross deformity of the duodenum and particularly if the ulcer is a penetrating one; and (b) that vagotomy associated with a conservative operation such as gastroenterostomy or pyloroplasty is the operation of choice in the young subject, particularly if the duodenal deformity is not gross and the duodenum lies free. It may be remembered in this connection that in the event of failure due to recurrent or secondary ulceration, the more radical procedure is still available.
Vagotomy for Secondary (Stomal) Ulceration

For some, the only valid indication for vagotomy is for the relief of symptoms due to stomal ulcer following partial gastrectomy. Of 36 cases recorded by Cule and Brown (1951) good results were obtained in 26. It is interesting to note that according to Alvarez (1948) vagotomy does not necessarily protect from marginal ulcerations.

Pollock (1952) found that recurrences of ulceration appeared or were suspected in 12 of 74 patients with jejunal ulcer submitted to vagotomy. In 4 the ulcer was duodenal, in 2 gastric and in 1 jejunal.

The American Committee on Vagotomy paid especial attention to the value of vagotomy in the treatment of gastro jejunal ulceration and as to whether it was superior to resection. The results of the examination of 99 cases of gastric resection and 294 cases of vagotomy alone led them to the conclusion that in the treatment of stomal ulcer following gastro enterostomy the results of resection were better than of vagotomy but that vagotomy alone was superior in the treatment of stomal ulcer following gastric resection.

Summary

It is still too early to dogmatize upon the place of vagotomy in the treatment of peptic ulcer although it is generally agreed (a) that gastric ulcers should not be treated by vagotomy and (b) vagotomy is the treatment of choice in stomal ulceration, particularly if following partial gastrectomy.

Of vagotomy in the treatment of duodenal ulcer it can be said that the immediate results in the treatment of the painful non-obstructing ulcer are good but that it is followed by intractable gastric delay too frequently for it to be used as a routine and should therefore be normally accompanied by a drainage operation.

PERFORATION

The surgeon has a choice among three methods of treatment of the perforated peptic ulcer, each of which according to its advocates is superior to either of the other two. They are (1) immediate operation and simple suture (2) immediate operation and partial gastrectomy (3) non-operative or aspiration treatment.

If one discounts the bias of enthusiasm for any one method it can be discerned that the immediate results judged in terms of survival alone are in the hands of the surgeon experienced in the method of his choice as nearly equal as to make argument profitless as to which is the best. Thus Sangster (1948) is able to record 103
perforations treated by simple suture with only four deaths, Nuboer (1951) 131 perforations treated by immediate partial gastrectomy with five deaths, and Taylor (1951) 101 cases of non operative aspiration treatment with eleven deaths.

The great improvement in the immediate results of operation is well illustrated by Sangster's figures—twenty four deaths in 100 cases recorded in 1939, and the 4 per cent of the series mentioned above, and by Chamberlain's (1951) massive series of 1,622 cases culled from the twenty year period 1930-49 in which the death rate (including cases too ill for operation) was 17.9 per cent as opposed to the 6 to 7 per cent of the last two years. This improvement is due to better medical care—including earlier diagnosis, to the increased availability of skilled surgeons to advances in anaesthesia, and to the antibiotics.

In deciding upon which method he shall adopt in practice, each individual surgeon will be guided by his own capability, and by the facilities he has at his disposal for after care. For most, the operation of simple suture will find the greatest appeal, though it is true that the majority of those who survive this procedure will suffer a recurrence. According to Turner (1951), the incidence of recurrence is in the neighbourhood of 85 per cent and he himself believes that all survivors should therefore be submitted to a radical operation within the immediate post operative period—that is to say, within three to four weeks after closure of the perforation.

Immediate partial gastrectomy will—or should—save the patient from subsequent ulcer invalidism and in the hands of the experienced gastric surgeon may not be a more dangerous procedure than resection by the same surgeon for the non perforated case. Nonetheless, it would not be acceptable as a routine procedure to most surgeons particularly for the younger patient with a duodenal ulcer, in which perforation is preceded by a short history of ulcer symptoms.

The great attraction of the aspiration method of treatment from the patient's standpoint is the avoidance of operation. Moreover, it saves him from all risk due directly to the operation which, in Taylor's view accounts for half the mortality amongst those treated surgically. As Heslop Bullough and Brun (1952) point out, and Stend (1951) agreed the method should however only be undertaken by those prepared and able to keep the patient under their close surveillance and it is not suited to circumstances where first class assistance and nursing facilities are not available. Stend who records five deaths amongst fifty patients treated by aspiration (four of the deaths were in patients rated too ill to withstand opera-
tion) believes it to be the treatment of choice. He gives the indications for surgery as follows —

(1) Inexperience in the method
(2) Failure to improve
(3) Evidence of gross peritoneal contamination
(4) When the diagnosis is in doubt

The last named must be considered a serious bar to routine adoption of the method though Taylor rightly points out that inaccurate diagnosis is an equal handicap if routine laparotomy is favoured for here conditions such as coronary thrombosis and pancreatitis may suffer needless exploration.

It has also been pointed out that perforation is not limited to peptic ulcer but may occasionally be due to carcinoma of the stomach.

A useful contribution to the assessment of operation and aspiration is made by Beattie (1951) who made a trial of expectant treatment in 40 consecutive cases. 32 were duodenal ulcers and one died. 7 were gastric ulcers and four died and one was a carcinoma who also died. As result of this experience Beattie has reverted to early laparotomy.

Taylor has modified slightly the procedure he originally advocated. The aspirating tube now used is opaque to X-rays and radiological confirmation of its position in the stomach is obtained. At the same time the amount of gas collection under the diaphragm is noted. A second radiograph is taken after twelve hours and if an increase in the amount of accumulated gas is revealed operation is considered. He prefers intermittent to continuous aspiration.

BLEEDING FROM PEPITIC ULCERATION

NORMAN C. IANNER

The management of bleeding peptic ulceration has in the past been confused by opposition between the supporters of medical and surgical treatment. Perhaps the most notable recent advance is the dissolution of these rivalries and an attempt to define the circumstances under which surgical intervention is required with particular attention to the type of ulceration, the age and condition of the patient and the medical and surgical facilities available.

The concept of a purely medical or non-operative approach to the bleeding ulcer is ended for all agree that certain patients will die unless the bleeding vessel is dealt with surgically. Similarly an almost purely surgical approach to the problem is certainly
Hæmorrhage

Indiscernible as a general rule. It is true that the author (1951) in treating consecutive series of patients by medical, mixed medical surgical, and by surgical methods (50 per cent of the cases operated on) found that the best results were in the last series. On analysis however, it is seen that the cases he dealt with contained an exceptionally high proportion of elderly patients with chronic gastric ulceration (43 per cent of the patients were aged over sixty years and nearly 60 per cent of the ulcers were gastric). This type of case is particularly suitable for surgical treatment. Such a high operation rate would be madisensible in a series with a marked preponderance of young patients with duodenal ulceration.

Table VII — Peptic Ulcer and Gastritis Groups (Incidence of Bleeding)

<table>
<thead>
<tr>
<th>Period No.</th>
<th>1941-43 Operation avoided</th>
<th>1944 December 1 to June Operation earlier</th>
<th>Always gastrectomy</th>
<th>1944 Operation early Simple to stop bleeding</th>
<th>1944 June 1 to December Operation early</th>
<th>1948 January to September</th>
<th>1949 Histerer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>193</td>
<td>190</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
</tr>
<tr>
<td>Operated on</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Over 50 (per cent)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Overall mortality (per cent)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Average rate of patient who died</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Improvements in medical management of the patient suffering from peptic ulcer haemorrhage deal first with increased oral nutrition, replacement of blood and tissue fluids avoidance of hypoproteinaemia, hypovitaminosis and hypokalaemia by the appropriate therapy and gentle limb and respiratory exercises. As a result there is a diminished incidence of such complications as parotitis pneumonia, thrombosis bed sores, amblyopia and the general tissue damage consequent on anaemia. Chemotherapeutic advances have made infective complications less lethal. A most important result of maintaining the patient in a better state is that even late surgery can be undertaken with a much higher prospect of success (Bohn 1949). It is still a fact, however, that if an emergency operation is necessary then the earlier the decision is made and the intervention carried out the better the prognosis.

Thus the physician can contribute much to the success of surgical intervention by maintaining the patient in good condition and by requesting surgical aid without procrastination. The more ready
operation of the physicians has been won by lowered surgical mortalities. This lowered surgical mortality is in part due to improvements in anaesthesia in chemotherapy in blood transfusion avoidance of the less effective operations e.g. gastrojejunostomy and the more widespread technical skill in performing the operation of gastrectomy.

Indications for Surgical Intervention A high standard of skill and wide experience of dealing with gastro-duodenal lesions is often required although some of the cases are technically not difficult. Certain general criteria may be laid down, which are in fact very similar to those enunciated by Gordon Taylor seventeen years ago (1937). The statement he made then is still true—

> Every case must be considered on its own merits there can be no hard and fast rules.

Briefly surgery is indicated if bleeding from a peptic ulcer is violent persistent or is repeated often enough to threaten life. As however waiting to confirm that the hemorrhage continues or is frequently repeated exposes the patient to grave risk, certain features of the case are picked out which indicate a particularly high risk of death from bleeding.

Age The patient aged over forty five to fifty years is less able to withstand severe anemia or hemorrhagic shock and the healing power of the ulcer and contractability of the blood vessels are diminished. Therefore surgery should be invoked much more readily in the older patient. However young persons do sometimes die of ulcer bleeding and youth is not a reason for withholding operation if bleeding from a chronic ulcer persists or recurs more than twice. While operation is often successful in the aged there eventually comes a time when the degree of senility and associated disease is such that an operation will almost certainly lead to death, and it is better to let the patient rely on the slender possibility that bleeding may cease spontaneously.

Catastrophic, Recurrent or Persistent Bleeding Particularly severe initial bleeding indicates that a large vessel is open and the risk of early death from exsanguination is present. With each recurrence of bleeding the danger increases and in a patient over fifty with a chronic ulcer more than one recurrence of bleeding is usually regarded as a strong indication for surgery. Persistent steady oozing requiring continuous transfusion more than thirty six hours after the onset of bleeding is an equally strong indication for surgery. The persistence or repetition of bleeding in the hospital is usually more significant than a history of repeated vomiting of blood at home.
Type of Ulcer The chronic ulcer is more prone to persist in bleeding though it is to be borne in mind that the acute ulcer or even an erosive gastritis may bleed persistently. The dyspeptic history is usually the main evidence in favour of chronic ulceration, but there may be a previous history of ulcer perforation or bleeding, or even of a positive X ray examination to lend weight to the evidence. In some clinics an emergency X ray examination by a barium meal or a gastroscopic examination is made during the first lull in bleeding after the patient's admission (Delannoy et al 1952, Palmer 1952, Tanner 1940). These do not tend to provoke further bleeding and may make the cause of bleeding certain.

In acute or gastrectric ulceration operation may become necessary, though it is usual to operate only after at least two repetitions of bleeding in such cases even in the elderly, and still more persistence with medical treatment is justifiable in the young. The late functional results of gastrectomy are better if a history of chronic ulcer dyspepsia precedes the operation.

Other Features Another feature to consider is the state of the radial artery for bleeding is less likely to cease spontaneously, and vascular complications of anaemia, e.g. cerebral thrombosis are more likely if there is atheroma or arteriosclerosis. Severe pain preceding the haemorrhage or pain persisting after the haemorrhage, is an unfavourable sign Noisy peristalsis on abdominal auscultation is suggestive of continued bleeding and the vomiting of clots suggests severe bleeding.

To this list another class of case may be added. Thus is the patient with a chronic ulcer who judged by his history, requires a gastrectomy (and sometimes is even on a hospital waiting list for interval operation) and who is admitted shortly after the onset of haemorrhage. In such cases operation is justified by its prophylactic effect against further bleeding as well as by its cure of the ulcerative condition.

Severe bleeding associated with duodenal stenosis is a hazardous complication and is best treated by operation with careful preoperative and post-operative correction of fluid and salt depletion. Acute ulcer perforation associated with severe bleeding is an absolute contraindication to conservative treatment and the ulcer should be resected rather than simply sutured.

Operative Procedures In all operations for ulcer haemorrhage a good drip blood transfusion is set up prior to operation the stomach is aspirated and a small stomach tube left in. It is impossible to aspirate all the clot from the stomach and so the anaesthetist must be prepared for the possibility that clots may be vomited. In some
centres pure local anaesthesia is favoured, partly because of the
danger of clot vomiting under general anaesthesia

- At laparotomy confirmation of the presence of the ulcer is first
required, and particular care should be taken to ensure that a high
posterior ulcer is not overlooked. Inspection of the serosa for a
blush or scar is made. A small clump of enlarged glands may
indicate the ulcer site. Even gastrotomy or duodenotomy may be
required to demonstrate the lesion.

In the majority of chronic ulcers a partial gastrectomy is the
most straightforward and reliable method of dealing with the
situation with reconstruction by gastro duodenal or gastro jejunal
anastomosis. In the case of high gastric ulcers a tongue shaped
upward extension of the resected tissue is made to include the
ulcer (Panchet). If a completely penetrating ulcer into the pancreas
or other viscus is present the bleeding point may remain in that
viscus when the stomach or duodenum is separated from it. In
such cases if a clot is seen in the ulcer base care must be taken not
to disturb it—for once it is removed or aspirated it may require a
good deal of effort to re-arrest the haemorrhage. If the splenic
artery is eroded as occurs with some posterior gastric ulcers then
ligation of the artery will be required on both sides of its erosion.
If the ulcer is duodenal it may be necessary to pass strong sutures
into the pancreas in order to bring together the ulcer edges in the
pancreas and so occlude the bleeding point. At other times it may
be helpful to close the duodenal wall in one layer and then, by
sutures between the anterior surface of the duodenum and the
fibrotic crater edge in the pancreas, the closed end is pushed into
the crater to press on and arrest the bleeding from it.

In certain cases less radical methods than gastrectomy may be
recommended to arrest the bleeding. For bleeding stomal ulceration
it is sometimes wise to inspect the crater by anterior gastrotomy
and simply underrun the bleeding point, keeping the major inter-
vention for a second occasion. The author has at times in aged
poor risk cases with duodenal ulceration made an anterior duodenal
incision and arrested the bleeding by sewing the ulcer edges firmly
together with silk repaired the duodenum—narrowing it—and then
made a gastro jejunostomy. Though at times life saving bleeding
may recur (twice in 10 cases in the writer's hands once fatally)
Some advocate simple excision of the ulcer for small acute ulcers
because the ulcer is mobile and the functional prognosis after
gastrectomy not so satisfactory as is the case in chronic ulceration.
There is a risk of leaving a second ulcer in such limited resections
and the author has given up this procedure except for rare occasions.
It is indeed sometimes as difficult a procedure to carry out as a gastrectomy. Local excision is also sometimes used for giant penetrating gastric ulcers in poor risk cases. It must be remembered in such cases that the ulcer is always larger than its area of complete penetration and to arrest the bleeding satisfactorily the whole ulcer edge must be excised and firmly resutured. In some cases resuturing leads to such gastric narrowing that a gastro jejunostomy is needed at the end of the operation. The indication for this operation again will be very rare.

If the site of severe bleeding cannot be determined then it is generally wise to perform a partial gastrectomy. In most cases all or part (e.g. in generalized erosive gastritis) of the lesion will be removed and even if it is not the remaining part of the stomach may have its blood supply diminished enough to cause the bleeding to cease. Lewison (1949), who performed 56 partial gastrectomies with only 4 deaths found that only in 40 per cent of the cases was a source of the bleeding actually seen to have been removed. None the less the surgical procedure caused the bleeding to cease. Simple ligation of the main gastric vessels has been advocated in the past for these cases but it is an unreliable method.

THE POST-GASTRECTOMY SYNDROME

HAROLD C EDWARDS

Removal of the stomach or the greater part of it, deprives man of a very important though not indispensable, adjunct to digestion. The effect of removal varies in different individuals. In many it is negligible in a few, profound. This variation is hard to explain for it will be apparent among patients who have been operated upon by the same surgeon in the same way. Some small degree of difference in the effects has been discerned after different types of operation by some observers (O'Neill 1950, Mmpriess and Burt 1948) but not by others (Goligher and Riley, 1952) and there is some relation between the severity of the disturbance and the amount of stomach removed (Pulvertaft, 1952, Goligher and Riley, 1952). But individual variations in the effects of removal cannot be satisfactorily accounted for thus. The most variable factor is undoubtedly that of the ego or personality of the patient himself and it is in this obscure field that the chief reason for this wide difference in effects amongst individuals lies. That the incidence of severe disturbances is less for one surgeon's patients than
for those of another is less a matter of technique than of selection of patients.

The risk of developing severe symptoms after partial gastrectomy appears to be greatest for the nervous subject with a minimal degree of ulceration particularly if he had experienced before operation some of the post-prandial symptoms—such as breathlessness, palpitations, fullness, fatigue—which are characteristic of the post-gastrectomy syndrome. Most of the many excellent investigations into the post-operative histories of large groups of patients commence in point of time with the operation and lose much by not taking into account pre-operation clinical and pathological detail. An enquiry, including this information would add greatly to our knowledge of predisposition to post-gastrectomy symptoms and help in the wise selection of patients for operation.

The incidence of significant symptoms is impossible to assess. Most patients after gastrectomy will, at least for a few months after operation admit if closely pressed to certain mild digestive discomforts. Such symptoms of discomfort are gladly suffered in exchange for the great benefits conferred by the operation. In a small minority only are the effects of so disturbing a nature that the patient regrets having submitted to surgery.

The great prominence which lately has been given to the post-gastrectomy syndrome is perhaps endangering the repute of the operation of partial gastrectomy and it needs therefore to be emphasized that partial gastrectomy for chronic gastric and chronic duodenal ulcer remains one of the most satisfactory operations in surgery provided the selection of patients is wisely made.

The effects of partial gastrectomy may be divided into two groups which however are to some extent mutually interdependent. They are (a) general nutritional defects and (b) subjective sensations (dumping).

General Nutritional Defects

Except when the patient has been starved before operation as a result of duodenal obstruction it is rare for him to put on weight after partial gastrectomy for ulcer irrespective of the type of operation performed. The best he can do is to regain his pre-operation weight and a number of patients fail even in this. After total gastrectomy even for a simple condition (e.g. polyposis) patients may become and remain emaciated. To Brain (1951) they are reminiscent of Belsen. Muir (1949) gives the following data for eighty six patients following subtotal gastrectomy—
Exceeded pre operation weight
Attained pre operation weight or within a few pounds of it
1/2 - 1 stone below pre operation weight
1 - 1 1/2
1 1/2 - 2
2 - 2 1/2

Pulvertaft (1952) finds weight loss more marked in women than men and that there is a general relationship between it and the degree of post operative symptoms. This weight loss unless severe, is not necessarily associated with discomfort nor does it often disconcert the patient. It may, however, reduce to a lower level than before operation what may be called the patient's vital potential. There may be a permanent reduction in his powers of concentration and endurance (gastric asthma of Buslau 1949), and zest for normal pleasurable pursuits. This is usually readily accepted by the older subject, and regarded as a small price to pay for restoration to a better level of health. It may however be a serious handicap to the young and heavy manual worker. It is on record that North American trappers and lumber men amongst whom duodenal ulceration appears to be common are rarely if ever able to endure again the physical hardships and laborious toil of their calling after partial gastrectomy.

There are many reasons for this nutritional defect some evident others obscure.

Amongst the former are subjective symptoms (the dumping syndrome itself), reduced capacity for intake of food, diminished appetite with distaste for certain foods, especially fats and failure of fat absorption. Among the latter are vitamin deficiencies, particularly of the B complex (Braun 1951 Welbourn and others 1951), pancreatitis and potassium deficiency (Smith, 1951).

Iron deficiency anaemia (microcytic anaemia) is not uncommon during the early post operative period particularly in women before the menstruation, largely as a result of blood loss and depletion of iron stores but megaloblastic anaemia is extremely rare though microcytosis unexplained but harmless is often to be found according to Braun (1951).

Finally evidence is now accumulating that these nutritional effects predispose to pulmonary tuberculosis.

Subjective Sensations (Dumping Syndrome)

The subjective sensations which have from long custom been classified under the heading of the 'dumping syndrome' refer to
symptoms directly due to the repercussions of the newly established anatomy and exclude those arising from such complications as recurrent ulcer stomal ulcer or jejunal loop obstruction.

There is a certain incoherence about them for they vary so greatly in their numbers, their severity, their insistence, their relation one to another the paths through which they may be mediated and their tendency to merge with the psychological.

In the milder degrees the patient's complaint may be solely a feeling of epigastric fullness rarely amounting to pain within 20 to 30 minutes of starting to eat sometimes the sole or major complaint is regurgitation of bitter fluid into the mouth. Both these or either one of them may be accompanied by a feeling of lassitude sometimes amounting to a feeling of complete exhaustion so that the patient is obliged to lie flat until he feels better. He may feel dizzy and rarely actually faint. There may be nausea and occasionally vomiting and diarrhea. Other bizarre sensations may be prominent or even predominant—such as breathlessness, palpitation, flushing, sweating, photophobia and a feeling of tightness of the scalp. Occasionally the latter group is unaccompanied by any uneasiness sensations in the abdomen itself.

The more local or epigastric symptoms usually develop soon or immediately after operation and may pass off within a few weeks or months or become permanent. The other or vasomotor symptoms may not develop for weeks or even months after operation and tend to persist. In some they regularly follow all meals in others only certain meals during the day and may be particularly noticeable after sweet drinks. In others they may occur as isolated episodes the patient being free of any untoward feelings for weeks at a time.

A second type of malaise is one which may occur at a longer interval after the meal when digestion is reaching a more advanced stage. These symptoms are very similar to the more immediate vasomotor symptoms and closely resemble symptoms typical of hypoglycaemia to which it is thought they are probably due.

Physical signs accompanying the dumping syndrome are few. There may be a pallor and sweating. The blood pressure may be raised a little together with an increase in rate of the pulse and respiration and a small rise in temperature.

Explanations for these symptoms have been eagerly sought and much difference of opinion as to the nature of their origin is in evidence. Capper (1951) for example believes that the major factor may be due to drag on the gastric remnant following the loss of its
upper supporting ligaments, and has been able to relieve a number of severe cases by reconstructing the supports at a second operation. Symptoms may, however, follow total gastrectomy, and Capper's explanation will not as he agrees supply the full answer, though it may sometimes be a major factor. Efferent loop reflex is not regarded as a frequent cause, for symptoms may occur without this being demonstrated. Hypoglycaemia has been discounted as a cause for the early symptoms both because of the time factor and because of failure to discover any correlation between the timing of the symptoms and the level of the blood sugar (Irvine 1948; Machella, 1949; Butler and Cypper 1951; Marr 1949).

Most observers agree that the crux of the matter is the rapid passage of undigested food from the gastric remnant— or, after total gastrectomy, the oesophagus— into the jejunum, but differ in their interpretation of the mode of the response of the latter to this hurried entry. It is tempting to think that simple distension of the jejunum by this undigested pabulum, to the reception of which the intestine is totally unaccustomed is the exciting cause for the symptoms may be reproduced by passing a balloon into the jejunum and distending it with air in the human subject whether or not a partial gastrectomy has been performed. Machella (1949) has shown also that various hypertonic solutions (glucose, protein hydrolysate, sodium sulphate) introduced into the jejunum, can also reproduce the symptoms and as is well known hypertonic chyme attracts water to itself by osmosis its bulk is thus increased and causes jejunal distension. Glazebrook and Welbourn (1952), in trying to confirm these observations found spasm a prominent feature of the clinical picture. Sufferers from the dumping syndrome were given a hypertonic solution of dextrose mixed with barium (50 per cent dextrose solution mixed with 8 oz of barium) and the reactions of the jejunum were observed under X rays. The solution provoked dumping symptoms, but there was no evidence of jejunal distension but only of rapid emptying. In some cases actual spasm of the jejunum was noted. In some kymographic records were made after introducing hypertonic glucose solution and an increase in tone and a great increase in the height of the contractions were recorded. Glazebrook and Welbourn (1952) investigated the effect of hexamethonium bromide (C6) in these patients in doses of ½–1 grm. before meals and found that it usually had the effect of increasing the appetite and the amount of food which could be taken with comfort. Further it reduced or abolished dumping symptoms and as shown radiologically, increased bowel activity and the rate of passage of contents.
Butler and Capper (1951) had a parallel experience with the effect of sympathetic interruption in that they were able to influence favourably the symptoms in the majority of sixty one cases by performing a splanchnic block. They concluded from this experience that the sensation is mediated through the sympathetic.

Vagotomy has no benign influence upon the early dumping syndrome. On the contrary, it may provoke it.

The Late Post Prandial Syndrome

Butler (1951) noted that some 5 per cent of patients after partial gastrectomy develop symptoms due to hypoglycaemia some time after a meal. Nearly half of them had similar symptoms beforehand. Muir (1949) also finds it uncommon and thinks it has received undue emphasis in the literature.

The commonest symptoms are tremor of the limbs, giddiness and profuse sweating associated with exhaustion (Capper 1951). The cause is linked with the rapid absorption of the sugar in the undigested gastric pabulum from the jejunum. Sufficient insulin cannot be mobilized to bring about its storage in the liver, and hyperglycaemia results (Wells and Welbourn 1951). Excessive production of insulin may, however, ultimately be stimulated so that the blood sugar in time rapidly falls to hypoglycaemic levels. Blood sugar curves of this type are found in about one third of the patients after partial gastrectomy, but in only about 15 per cent of these are symptoms produced (Wells and Welbourn 1951).

The symptoms may readily be relieved by swallowing a lump of sugar. Ephedrine is also effective. The syndrome frequently follows vagotomy (Pollock 1952).

The Relief of the Post-gastrectomy Symptoms

There is a general tendency for spontaneous improvement in all cases however severe the symptoms. Eighteen months after operation Geligher and Riley (1952) in reassessment of 141 of 168 patients suffering in varying degree and which represented 75 per cent of all patients investigated found that the incidence of symptoms had fallen from 75 to 47.5 per cent and of severe symptoms from 12.5 to 7.1 per cent. It would thus seem important not to resort too early to operative measures unless some obvious mechanical cause can be demonstrated.

It is probably ill-advised to attempt any form of therapy other than reassurance for the mild case. In any event such patients do
not return with their complaints, which are usually only revealed after a purposeful and objective inquiry.

In the severe case, every attempt should be made to unearth the cause. The patient will on occasion discover for himself what article of diet—such as sweet tea taken without solid food—is most likely to precipitate an attack, and avoid it. Belladonna or ephedrine is sometimes effective if taken before meals, and hexamethonium may help those cases in which steatorrhoea is a prominent feature. Machetta (1949) recommends omitting fluids from meals and pur- taking of them between meals. As an aid to fat digestion, and in the hope of increasing body weight, it is suggested that the total fat intake be increased but spread throughout multiple small meals.

In those cases which are incapacitating and fail to show improvement the effect of splanchic block may be tried. Occasionally (Capper 1951) lasting relief may thus be obtained. Operations which have given relief to some cases are jejuno-jejunostomy below the anastomosis, conversion of the two jejunal limbs into one cavity continuous with the stomach (both these operations are only relevant when the afferent limb is long i.e. after the anterior polyp), reconstruction of gastro-jejunal ligaments (Capper), conversion of a Billroth II type of operation into a Billroth I.

CARCINOMA OF THE STOMACH

The five year survival rate for patients with carcinoma of the stomach has risen according to the Mayo Clinic figures from 5 to 14 per cent during the past thirty years (Table Fig 33). This improvement though far less than could be desired is due to earlier diagnosis, an increase in resectability rate and an all round advance in surgical management and anaesthesia. There is little or no evidence as yet that it is due to any increase of the extent of tissue removed. There is indeed no proven relation between the extent of the operation and the prospect of cure. It has however been repeatedly shown that the outlook depends very largely upon whether operation is undertaken while the growth is still confined to the stomach or delayed until the lymphatic glands are infected. The move to perform routinely a total gastrectomy for carcinoma of the lower half of the stomach is in fact unjustified by the evidence available. Whatever theoretical advantages total gastrectomy may possess two important considerations weigh heavily against its practice —

(a) The primary operative mortality is significantly greater than that of subtotal gastrectomy and its routine performance would
probably lose more lives than it would save from recurrence in the gastric remnant

(4) The level of wellbeing is usually far lower after total than after subtotal gastrectomy.

For these reasons the choice of operation for cancer confined to the distal half of the stomach is subtotal gastrectomy, with excision of the lymphatic drainage and the great omentum. Total gastrectomy should be reserved for diffuse cancer, and cancer involving the upper half of the stomach.

Though it goes without saying that early diagnosis which increases the possibilities of resection before lymphatic involvement has taken place, is the key to greater success, it by no means follows that any direct relation can be worked out between length of history and five-year cure rate for the important arbiter of survival is the nature of the growth itself—as in carcinoma affecting other regions of the body. A short history especially in the younger patient usually connotes a virulent type of growth for which surgery is unavailing. A long history sometimes indicates a growth of low vitality. It may also be that when a long history precedes operation, the patient has developed some degree of resistance to the cancer.

In the author's experience the relation between length of history and resectability rate is as follows—

In 31 cases with a recorded history not exceeding 3 months, only 8 were operable—in the sense that removal gave prospect of cure. Of 31 with a recorded history of between 3 and 10 years, 10 were operable. Pack and McNeer (1948) record a similar experience.

The best palliative operation is partial gastrectomy, even if removal of the whole of the obvious extramucosal spread of the
growth is impossible There must be, of course, in some cases a narrow margin between what can be considered palliative and what can be considered radical The cynic may, in fact, and perhaps with some justification, regard all operations as palliative It is a commentary indeed on the unknown factors concerned in cancer growth and cancer resistance that many obvious palliative operations secure as long a survival rate as do radical resections

![Diagram of anatomical approach to total gastrectomy](image)

Fig 31 Anatomical approach to total gastrectomy (Figs 31 and 3 by courtesy Dr I A Meyer and the Editor Surgical Clinics of North America)

There should even in the palliative operation be no hesitation in removing the mid portion of the transverse colon if the middle cohe artery is involved in the growth Direct end to end anasto mosis by single layer interrupted sutures of the residual colon is a safe procedure provided the patient’s operation is preceded by a course of phthalyl-sulphathiazole, and streptomycin is given from the night before operation and continued until all danger of leakage is passed

Precision tests in diagnosis are still lacking though the greatest
hope seems to lie here in the adaptation to the stomach of Papamichalis (1950) cytological method. Clinical assessment remains the most important diagnostic measure and where clinical evidence supports a diagnosis of carcinoma of the stomach despite doubtful or negative radiological and gastroscopic findings, exploration should be undertaken.

The age-old controversy about the incidence of malignant changes in gastric ulcer has burnt itself out. Long experience has shown that peptic ulcers on the lesser curve of the stomach in women almost never and in men hardly ever, become malignant, but chronic peptic ulcers in the pyloric antrum should always be suspect either of actual or of potential malignancy, and for them operation should invariably be advocated.

Total gastrectomy for cancer of the body of the stomach should usually be performed through the abdomen. There is rarely any justification for entering the thoracic cavity and abdominal thoracic exposure should be reserved for cancer at or near the cardia whether gastric or oesophageal. Increase in the exposure afforded by the usual midline or paramedian incision may be obtained by excising the unsiform cartilage and by subcutaneous division of the lower left costal cartilages. The extent of the radical operation is illustrated in Fig. 34.

Restoration of continuity after total gastrectomy is best obtained by oesophago jejunostomy, either end to side or end to end (Roux) (Fig. 35) (see also p. 83). In patients with mobile viscera oesophago duodenostomy may be a tempting alternative being quicker of performance.

For cancer of the proximal portion many surgeons prefer to leave the pyloric antrum. This method inere operatio
culty, however, and unless accomplished by some form of pyleoroplasty, retention is liable to develop subsequently in the resulting pouch.

References

Surgical Treatment of Peptic Ulcer

ALVAREZ W C 1948 Gastroenterology 10 417
BEATTIE A D 1950 Lancet i 525
CHILF G T and BROWN C M Jr 1951 Ibid 17 14
DAILEY U C JEFFERSON C H II LIMUS C W and PROFITT M M 1952 Surg Clin N Amer 1 Feb 47
DRASTEND R R and WOODWARD R R 1944 J Amer med Ass 145 790
HENLEY J A 1952 Brit J Surg 40 118
JAMES A H and PICKERING G W 1949 Clin Sci 8 181
Moor E F D 1948 Gastroenterology 11 442
Morenci J 1953 Ann R Coll Surg 12 328
Morrissey D M 1950 Brit med J ii 651
O'NEILL T 1942 Brit J Surg 40 148
ORR J M and JOHNSON H D 1949 Brit med J ii 1316
ORR J M and JOHNSON H D 1943 Lancet i 23
POLLOCK R V 1952 Ibid ii 793
PULVERTAFT C N 1952 Lancet i 225
STEVENS D L 1951 Ibid ii 1390
TANNER C 1950 Postgrad med J 26 570
Vibick A H 1948 Lancet i 505
WATERS W and BELDING H H 1951 Proc Mayo Clin 25 199

Perforation

BEATTIE A D 1951 Brit med J ii 992
CHAMBERLAIN D 1951 Proc R Soc Med 44 273
HESLOP T S BULLOUGH A S and BRUN C 1952 Brit J Surg 40 52
KUGER J F 1951 Lancet ii 922
SANGSTER A H 1948 Ibid ii 289
STEAD J R STG 1951 Ibid ii 12
TAYLOR H 1951 Ibid ii 7
TURNER F P 1951 Surg Gynec Obstet 92 281

Bleeding

BOR I G 1949 Brit Med J ii 630
DELANOY E GAUTIER F SOLLIF P and LEMAIRE G 1952 Presse med 60 236
GORDON TAYLOR G 1937 Brit J Surg 25 403
JONES F A 1952 Modern Trends in Gastroenterology Butterworth London
LFIWSON F I 1949 Arch Surg 59 37
PALMER F D 1952 Ann intern Med 36 1484
TANNER C 1949 Med Pr 221 9
ANNEN C 1951 Edin med J 58 293
Post-Gastrectomy Syndrome

Brain R H 1951 *Lancet* 1137
Butler T J 1950-51 *Gastroenterology* 76 3:9
Butler T J and Capper W M 1951 *Brit med J* 1177
Busalov A A 1949 *Khururgiya* 11 30
Capper W M 1950-51 *Gastroenterology* 76 319
Capper W M 1951 *Proc R Soc Med* 44 777
Goligher J C and Riley T R 1952 *Lancet* 1 630
Irvine W T 1948 *Brit med J* 11 514
MacIiella T E 1949 *Ann Surg* 130 143
MacIiella T E 1950 *Gastroenterology* 4 237
Minniss T W and Brit St J V C 1948 *Brit med J* 11 1903
Muir A 1949 *Brit J Surg* 37 165
Muir A 1950-51 *Gastroenterology* 76 360
O Neill T 1950 *Brit med J* 11 15
Pollock A V 1952 *Lancet* 11 795
Pulvertaft C N 1952 *Ibid* 1 223
Smith H W 1951 *Ibid* 11 716
Welbourn R Hughes R R and Wells C A 1951 *Ibid* 1951
Wells C and Welbourn R B 1951 *Brit med J* 11 546

Carcinoma

Bahirson J Walters W Cray H A and Priestly J T 1952 *Proc Mayo Clin* 27 137
Kirklin J W and Clagitt O T 1951 *Surg Clin N Amer* Aug 909
Pack G T and McNeil G 1948 *Surgery* 24 769
Panico F G Papanicolaou G N and Cooper W A 1950 *J Amer med Ass* 122 1308
Swynnerton D I and Truplove S C 1951 *Brit Med J* 11 1243
CHAPTER IX

THE GALL-BLADDER AND BILE DUCTS

HAROLD C EDWARDS

POST-CHOLECYSTECTOMY SYMPTOMS

A considerable proportion of patients are unrelieved of the symptoms for which cholecystectomy is undertaken, or subsequently develop a fresh series of symptoms referable to the biliary tract. Pribram (1950) estimates the incidence to be 20 per cent, and Love (1952) 15 per cent, of the total. The causes appear to fall into two groups:

(a) Residual disease or development of structural changes in the bile passages

(b) Aberration of the control mechanisms of bile expulsion into the duodenum (dyskinesia)

Residual Disease and Structural Change

The danger of leaving stones in the common bile duct after cholecystectomy for calculous cholecystitis has long been recognized. This risk can be significantly diminished by routine cholangiography performed at operation before the gall bladder is removed. Love (1952) has used cholangiography at operation in 322 patients, with only 9 technical failures and a positive result in 56. In 27 stones were revealed; in 14 spasm of the sphincter of Oddi, in 11 chronic pancreatitis causing compression of the duct, in 2 carcinoma of the pancreas, in 1 papilloma at the ampulla, and in 1 a constriction by the hepatic artery.

Though many of these conditions would be detectable by inspection and palpation there is no doubt that cholangiography in expert hands will make a gratifying contribution to precision in diagnosis. Love's method is to inject 5–10 ml of a contrast medium such as neo-iodril or duodone into the common bile duct by means of a cannula entered through a small incision in the cystic duct. Five seconds is spent over the injection and a radiogram taken immediately afterwards (Figs 36–39).

The stump of the cystic duct may be a potential source of trouble (Garlock and Hurwitt 1951). Calculi may be left within it or
Fig. 36 Normal cholangiogram showing regurgitation of fluid along duct of Wirsung (W) and free flow of fluid into duodenum (D)

Fig. 37 Spasm of sphincter of Oddi. Dilated common duct (CBD). No fluid enters duodenum. Treated by division by sphincterotomy.

Fig. 38 Compression of lower end of the common bile duct due to chronic fibrosing pancreatitis.

Fig. 39 Filling defect in the common bile duct due to papilloma (P) which was excised transduodenally. Small amount of fluid in duodenum (D).

(By courtesy of Mr. P. J. M. Ilver and the Editor "The British Journal of Surgery").

possibly, develop there subsequent to operation. It may distend to form a diverticulum which harbours infection. It has been suggested also that failure to clean the duct meticulously before ligature at cholecystectomy may result in symptoms due to inclusion within the ligature of nerve filaments. Opinion et as to wheth
At operation the cystic duct should be ligatured flush with the common bile duct. Most surgeons would agree that it is safer to leave a short length—perhaps \(\frac{1}{4}\) in.

Dyskinesia

Of recent years increasing interest has centred around the problem of symptoms referable to the biliary tract following cholecystectomy, and not occasioned by any discernible organic lesion. The incidence of such symptoms appears to vary considerably in different clinics and there is reason to believe that they most frequently follow cholecystectomy performed for minimal lesions in the gall bladder. This experience underlines the need for observing strict criteria for the operation of cholecystectomy and apart from new growth, limiting the operation in general to calculous cholecystitis and in general abjuring it for non-calculous cholecystitis.

Removal of the gall bladder may undoubtedly upset the mechanism of biliary flow into the duodenum sometimes to the extent of causing symptoms more troublesome than those for which cholecystectomy was performed. In certain cases preoperative symptoms may have in any case been due to dyskinesia and removal of a gall bladder which was itself not responsible may have the effect of increasing the severity of symptoms arising from this cause.

Pribram (1950) believes that the effects of deprivation of each of the main functions of the gall bladder as a result of cholecystectomy are as follows—

A **Functions related to cholokinesis (expulsion of bile)**—

1. Regulation of bile pressure in the bile ducts the gall bladder working as an overflow reservoir and tension bulb.

Clinical syndromes of missing function pressure syndromes cramps in the right upper abdominal quadrant suggestive of real colic nausea and the like.

2. Neuroregulation of gall bladder contraction in relation to opening reflex of the sphincter—

Clinical syndromes of missing function dyskinesia of the sphincter—

(a) Spasm leading to increased pressure syndromes and biliary stasis favouring development or flare up of cholangitis or pancreatitis.

(b) Paralysis of the sphincter leading to diarrhea and enteritis.

B **Functions related to biochemical properties of concentrated gall bladder bile**—
And in digestion of food particularly fat, bile salts and other secretions assisting the actions of the lipases.

Clinical syndromes of missing function: lowered tolerance to food especially fat, anorexia and flatulence.

The clinical pattern is somewhat confused, and it may be difficult to distinguish between hypo- and hypertonia, although Newman (1933) made an attempt to elucidate their distinctive features. In the main hypertonia gives rise to period attacks of pain of a few minutes duration and is associated with loss of weight and occasionally transient jaundice secondary to cholangiohepatitis or pancreatitis may be observed. The hydrochloric acid concentration in the gastric juice may be high or normal. Hypertonia is likely to cause a flatulent dyspepsia, nausea and appetite loss, and in severe cases diarrhea because of unlimited and continuous passage of bile through a paralysed sphincter of Oddi into the duodenum. Hypochlorhydria is the rule.

Attempts have been made to record the degree of tension within the common bile duct by manometry at operation. Mallet-Guy (1910) performs this examination as a routine and bases his future medical and surgical care upon the interpretation of the results obtained combined with those from routine radiology of the bile passages.

Hypertonia appears to be more common than hypotonia. The treatment of both in the first instance is medical. That for hypertonia is based upon the principle of prevention of sphincter spasm—the avoidance of stimulating ingredients in diet and the administration of antispasmodics. For hypotonia, improvement may follow administration of HCl and pepsin after each meal (Pribram).

Surgical treatment must necessarily only be entertained if the symptoms are severe, special attention being paid to any psychological background for lack of knowledge prevents complete reliance on any operative procedure the outcome of which is to be regarded more in the light of hope than certainty.

Neurogenic Control of the Sphincter of Oddi

Though we are lacking precise knowledge of the nerve supply to the sphincter of Oddi there is reason to believe that the parasympathetic nervous system through the right vagus maintains tone control and that right vagotomy will relax spasm of the muscle. Crore and Miller (1951) have put this theory to the test in 9 patients performing a bilateral vagotomy in 5 and a right vagotomy in 4. It was found that bilateral vagotomy was effective
than right vagotomy. Coleman and Bennett (1952) record relief of symptoms in bilateral vagotomy in 5 patients.

Mallet Guy (1951) recommends right splanchnicotomy in the treatment of hypotonia demonstrated manometrically and radio logically, and has performed this operation on 135 patients with 82 per cent of "perfect" results.

Most surgeons will not, however, be attracted to such procedures as vagotomy or splanchnicotomy for the relaxation of a spastic sphincter or the rehabilitation of a relaxed sphincter until far more certain knowledge of the regulation of the musculature at the ampulla is known, and would prefer to rely upon a more direct procedure, Two possibilities present themselves for the relief of hypertension—choledochoduodenostomy and sphincterotomy. If the common bile duct is grossly dilated, the former operation is the one of choice for it is simple to perform, and will ensure bile drainage.

The results of division of the sphincter are likely to be less certain particularly if performed by means of a sphincterotome introduced through the common bile duct as recommended by Doubilet and Mulholland (1948). On the other hand, transduodenal exposure of the ampulla and division or partial excision, of the sphincter is often difficult to accomplish, and not without risk, though Lester and Colp (1952) have recorded a good proportion of satisfactory results in 21 cases followed for between three and fourteen years. Simple dilatation of the sphincter through the common bile duct is not more likely to give permanent relief than dilatation of physiological or organic structures occurring elsewhere in the body.

REPAIR OF THE BILE DUCTS AFTER INJURY

Damage is usually due to errors of technique, abetted by operating under conditions where proper facilities are lacking. Fibrous obstruction to the common bile duct may however develop many years after cholecystectomy performed without any observable fault.

Injury to the common bile duct appears to be most often inflicted if cholecystectomy is performed when the gall bladder is acutely inflamed anatomical details being obscured by edema, and this constitutes an argument against routine operative treatment for acute cholecystitis. The most vulnerable areas are at the junction of the cystic duct with the common bile duct and at the level at which the cystic artery passes under the latter to reach the
gall bladder. Should the artery be divided accidentally before ligature, or should the ligature slip from around it temporary hemostasis may be obtained by compression of the hepatic artery as it runs in the gastro hepatic omentum (Lahey, 1950). A successful outcome of operation for common bile duct damage can only be hoped for at the first attempt. Patients whose jaundiced existence is punctuated by repeated visits to the operating theatre rarely if ever regain a satisfactory biliary mechanism. The most favourable circumstances should therefore attend the operation.

One absolute essential to success is full and free exposure, and when the liver is so large as to be an embarrassment to exposure of the damaged bile duct through an abdominal incision consideration should be given to exploration through a right thoracoabdominal wound. This enables the liver to be rotated backwards and upwards into the chest so that the hilum is fully exposed to view.

For reconstruction a mucoso mucosal suture line is the desideratum. The ideal is to secure direct union between the two ends of the common bile duct. Failing this, the upper end may be sutured end to end to a long limb of the jejunum prepared after the Roux principle. The result from the latter operation may however be marred by recurrent infection of the biliary passages from the small bowel. Other operations such as first of all establishing an external fistula which is subsequently implanted into the duodenum or jejunum are unlikely to give permanent relief. Longmire's (1948) operation in which the cut surface of the liver is anastomosed to the jejunum after resection of the greater portion of the left lobe of the liver can only be effective if the damage is below the union of the hepatic ducts otherwise the right lobe of the liver will not drain via the left lobe into the jejunum. As Lahey (1949) pointed out if the obstruction is not above this direct anastomosis either to the lower end of the duct or to the jejunum should be technically possible. The only indications for operations of this type are when previous unsuccessful operations have used up any upper duct remnants. In general permanent indwelling tubes should be avoided.

If a simple structure is present that is to say the common bile duct has not been completely divided direct anastomosis over a T tube which enables drainage to be established should be feasible. If the common bile duct has been completely divided the upper end will be bulbous (drumsticked ended) and unless the duct has been obliterated as a result of infection it should be recognized without great difficulty. If the damage lies at, or above, the point of...
hepatic ducts, the two lumina may be converted into one by Cattell's manoeuvre (Fig 40) preparatory to anastomosis either with the lower end of the duct or with the jejunum. It may be extremely difficult to find the lower end of the divided duct, for its calibre will be shrunk. In order to obtain sufficient length of duct for suture, the duodenum is rolled over to the left and the duct freed from the pancreas by splitting the latter if need be to the level of its union with the pancreatic duct. Direct union should be made over a T tube so that prolonged drainage may be instituted. When the lesion is situated near the hepatic duct, the upper short limb of the tube may be split, one moiety being placed in either hepatic
duct. Lahey has had prepared for use in such cases a T tube with the upper limb forked for accommodation within the hepatic ducts (Fig 41).

References

Gall Bladder

COLEMAN E P and BENNETT D A 1952 J int Coll Surg 17 805
CRILE G and MILLER D W 1951 Arch Surg 63 687
DUBLIGHT H and MULHOLLAND J H 1948 Ann Surg 128 609
GARLOCK J H and HERWITT F S 1951 Surgery 29 833
LAHEY F H and PARTER L J 1950 Surg Gynec Obstet 91 29
LESTER L J and COLP R 1952 Arch Surg 64 168
LOVE R J McN 1952 Brit J Surg 40 214
Mallet Guy P 1951 Lyon chir 46 53
NEWMAN C 1933 Lancet 1 780 841 and 896
PRIBRAM B O C 1930 J Amer med Ass 142 1262

Bile Ducts

LAHEY F H 1949 New Engl J Med 240 161
LAHEY F H and PARTER L J 1950 Surg Gynec Obstet 91 20
LONGMIRE W P Jr and SANFORD M C 1948 Surgery 24 264
CHAPTER X

THE PANCREAS

HAROLD C EDWARDS

CANCER OF THE PANCREAS

It is well recognized that cancer of the pancreas occurs in two chief forms —

Cancer at the Ampulla This may be a papillomatous growth projecting into the duodenum or a flat ulcerating growth which may cause obstructive jaundice when it is still so small as to be barely detectable at operation.

Cancer of the Main Gland The head comprises about two thirds of the pancreas and it is thus but natural that two thirds of the recorded cases of pancreatic cancer arise within it. Though jaundice

![Figure 42: Lymphatic drainage of the pancreas](image)

is a common—almost constant—development it may not appear until the growth is extensive and the lymphatic glands have become involved. The growth is an adenocarcinoma and is commonly of a high grade of malignancy. Spread may occur at an early date to the three main peripancreatic lymphatic gland groups—supero lateral lying beneath the pylorus, the infero lateral lying over the uncutate process of the pancreas, and the splenic chain lying in front of the body of the pancreas in relation to the splenic vessels (Fig 42). From these spread may occur to the hepatic lymphatic glands. Secondary in the liver may appear later. Spread may also occur to the periaortic nodes and nodules may appear.
duct. Lakey has had prepared for use in such cases a T tube with
the upper limb forked for accommodation within the hepatic
ducts (Fig. 11)

References

Gall Bladder

Coleman T E and Bennett D A 1942 J int Coll Surg 17 863
Chill C and Miller D W 1931 Arch Surg 33 687
Doubilet H and McNabland J H 1948 Ann Surg 128 609
Carlton J H and Hurwitz F S 1941 Surgery 29 833
Lamy J H and Partek L J 1930 Surg Gynec Obstet 59 93
Lester L J and Colp R 1942 Arch Surg 44 168
Love H I M N 1932 Brit J Surg 40 214
Mallقيt C 1949 Rec Med du Moyen Orient Beyrouth 6 42
Mallет L I 1941 Lyon chir 46 53
Newma C 1933 Lancet 1 780 841 and 896
Prichard B O C 1940 J Amer med Ass 142 1262

Bile Ducts

Aifty F H 1949 Neu Engl J Med 240 161
Aifty F H and Partek L J 1940 Surg Gynec Obstet 10 25
Onoishii W P Jr and Sanford W C 1948 Surgery 4 264
CHAPTER VIII

THE PANCREAS

HAROLD C. EDWARDS

CANCER OF THE PANCREAS

It is well recognized that cancer of the pancreas occurs in two chief forms —

Cancer at the Ampulla This may be a papillomatous growth projecting into the duodenum or a flat ulcerating growth which may cause obstructive jaundice when it is still so small as to be barely detectable at operation.

Cancer of the Main Gland The head comprises about two thirds of the pancreas and it is thus but natural that two thirds of the recorded cases of pancreatic cancer arise within it. Though jaundice

is a common—almost constant—development it may not appear until the growth is extensive and the lymphatic glands have become involved. The growth is an adenocarcinoma and is commonly of a high grade of malignancy. Spread may occur at an early date to the three main peripancreatic lymphatic gland groups—superolateral lying beneath the pylorus, the inferolateral lying over the uncinate process of the pancreas, and the splenic chain lying in front of the body of the pancreas in relation to the splenic vessels (Fig 42). From these spread may occur to the hepatic lymphatic glands. Secondaries in the liver may appear later. Spread may also occur to the periaortic nodes, and nodules may appear.
duct Lahey has had prepared for use in such cases a T tube with
the upper limb forked for accommodation within the hepatic
ducts (Fig 41)

References

Gall Bladder

Coleman E P and Bennett D A 1942 J Int Coll Surg 17 863
Crile G and Miller D W 1931 Arch Surg 63 687
Doubilet H and Mulholland J H 1948 Ann Surg 128 609
Garlock J H and Hurwitz F S 1941 Surgery 28 633
Lester L J and Cole R 1952 Arch Surg 64 168
Love R J McN 1952 Brit J Surg 40, 214
Mallet Guy P 1931 Lyon chir 46, 53
Newman C 1933 Lancet 1 785 841 and 806
Pribram B O C 1930 J Amer med Ass 142, 1202

Bile Ducts

Lahey F H 1949 New Engl J Med 240 101
Longmire W P Jr and Sanford W C 1948 Surgery 24 261
ordinary Polya operation in front of the colon. Implantation of the residual pancreas into the jejunum may be a procedure of some difficulty as a meticulous anastomosis is impossible and there is often disparity between the size of the cut surface and the diameter of the jejunum. There are two possible alternatives: (a) Implantation into the open end of the jejunum at the point of section

(Fig 44b) (b) Implantation into the stomach (Wells and others, 1952)

When jaundice is severe, and the patient's condition appears unlikely to withstand a one stage procedure, preliminary drainage of the gall bladder into a loop of the jejunum is the first step.

Results

The best prospect for operative success is for growths situated at the ampulla of Vater for attention is brought to the presence of the latter by the onset of jaundice while the growth is still localized. The prospect of cure of cancer of the head diminishes proportionately to the distance of the origin of the growth from the ampulla because the clinical symptoms which it produces are so slight and so obscure that its presence before jaundice develops can rarely be suspected. Experience has now shown that by the time jaundice due to cancer of the head of the pancreas has developed, the growth is too advanced to offer much if any prospect of cure. Operation results to date certainly give room for doubt as to whether pancreaticoduodenectomy for pancreatic cancer situated elsewhere than at the ampulla is capable of prolonging life and comfort to a degree appreciably greater than will palliation of the jaundice by a short circuit operation.

Cattell and Pyrtle (1949) were able to perform a pancreaticoduodenectomy on 56 of 165 patients explored. Of 20 in whom the growth was at the ampulla, of whom 1 died from operation, only 3
Radical Operation

Small mobile ampullary growths in which there is little evidence of extension into the head of the pancreas—this applies particularly to the papillary type—may be satisfactorily treated by transduodenal section with reimplantation of the common bile and pancreatic ducts into the duodenum, a method which has been employed sporadically since the first recorded attempt by Halsted in 1898.

The radical operation for the larger ampullary tumors is however similar to that for the head of the pancreas. The affected portion of the pancreas is removed together with the duodenum and the lymphatic glands draining the pancreatic head. The amount of pancreas to be removed in cancer of the head will depend upon the extent of the growth but as Brunschwig (1944) has insisted, the growth must be given a generous margin for it is impossible to define its exact limit by palpation. The whole duodenum to a point beyond the flexure together with the pyloric end of the stomach is removed (Fig 43). If the superior mesenteric vessels are involved the case is inoperable.

After removal the surgeon has three main problems—restoration of continuity of the alimentary tract, of the biliary tract and the disposal of the cut surface of the pancreas. It is customary amongst most surgeons to place all three into the jejunum in the order of biliary tract pancreas and stomach. This may be done either into a loop of jejunum anastomosing the two limbs at a convenient point, or into a long limb of jejunum (Fig 44).

Either the gall bladder or the common bile duct may be implanted into the jejunum. This can be an end to end procedure if the Roux operation is decided upon. The stomach is anastomosed as if for an
ordinary Polya operation in front of the colon. Implantation of the residual pancreas into the jejunum may be a procedure of some difficulty as a meticulous anastomosis is impossible and there is often disparity between the size of the cut surface and the diameter of the jejunum. There are two possible alternatives: (a) Implantation into the open end of the jejunum at the point of section

(Fig 44b) (b) Implantation into the stomach (Wells and others, 1952)

When jaundice is severe and the patient’s condition appears unlikely to withstand a one stage procedure preliminary drainage of the gall bladder into a loop of the jejunum is the first step

Results

The best prospect for operative success is for growths situated at the ampulla of Vater for attention is brought to the presence of the latter by the onset of jaundice while the growth is still localized. The prospect of cure of cancer of the head diminishes proportionately to the distance of the origin of the growth from the ampulla, because the clinical symptoms which it produces are so slight and so obscure that its presence before jaundice develops can rarely be suspected. Experience has now shown that by the time jaundice due to cancer of the head of the pancreas has developed the growth is too advanced to offer much if any prospect of cure. Operation results to date certainly give room for doubt as to whether pancreaticoduodenectomy for pancreatic cancer situated else where than at the ampulla is capable of prolonging life and comfort to a degree appreciably greater than will palliation of the jaundice by a short circuit operation.

Cattell and Pyrtek (1949) were able to perform a pancreaticoduodenectomy on 56 of 165 patients explored. Of 20 in whom the growth was at the ampulla of whom I died from operation, only 3
were known to have lived for five years. Of 30 patients with cancer in the head of the pancreas, there were 5 post operative deaths and of the remaining 25, 18 had died within nineteen months. The longest survival at the time of the report was three years and seven months. Rodney Smith (1953) records 7 radical resections of 28 patients explored; 2 being the subject of ampullary and 5 of pancreatic growths. The former 2 survived eighteen months, but the longest survival of the second group was ten months. Miller and Clagett (1951) report a five year survival of 11 radical operations for cancer of the head, and 3 of 7 radical operations for cancer of the ampulla.

There is little evidence that total pancreatectomy for carcinoma of the head as opposed to partial pancreatectomy, offers any better chance of cure. Patel (1951) reports that of 26 total pancreatectomies 11 died post operatively; 10 within fifteen months and the longest survivor of the 5 remaining alive is eleven months.

Diagnosis

Improvement in the results were only to be achieved if the diagnosis of cancer of the pancreas can be made before the onset of jaundice. The difficulty in so doing is well illustrated by the experience of Brown and others (1952) who record that in only 6 of 37 patients fully investigated was a preoperative diagnosis possible. All observers agree that the most frequent symptom is pain in the right hypochondrium often radiating through to the back and, according to Smith and Albright (1952), aggravated by the supine and relieved by the erect position. It is characteristic of the pain that it persists without remission. Other related symptoms are progressive weight loss and anorexia. Hypochromic anaemia is usually present and occasionally bouts of low fever associated with leucocytosis. Dyspepsia too ill defined to be pathognomonic may also be a feature. There may be evidence of pancreatic deficiency e.g. mild and transitory glycosuria and excess of fat in the stools. With such symptoms the diagnosis can be little more than a surmise and can only be ascertained by exploratory laparotomy which should be advocated when a clinical history of this nature is related.

One of the quite unexplained complications of the condition is venous thrombosis affecting one of the peripheral veins in the leg or arm.

Even when the abdomen is open it is often difficult by inspection and palpation to determine the nature of a swelling of the head of the pancreas and pancreaticoduodenal resection has in fact been carried out in error on more than one occasion for chronic pan
creatitis. Microscopy can make the distinction in some cases.

D'Offay (1946) recommends a preliminary short circuit operation and lymph gland biopsy to be followed by radical excision of cancer if found. Removal of a portion of the tumour mass for biopsy entails some risk of causing a pancreatic fistula. Moreover, as Probststein (1950) and others have shown, it is very unreliable because of the uncertainty in including a portion of any growth which may be present in the biopsy specimen. Probststein found that 11 of 18 patients in whom this type of biopsy showed results negative for growth subsequently were proved to have cancer. Kirkland (1951) recommends needle biopsy using a hollow needle which removes a cylinder of pancreatic tissue 10 mm x 1 mm. In his hands, the method has given satisfactory results without causing the development of a fistula such as might be expected from excising a portion of the swelling for microscopy.

DIAGNOSIS OF OBSTRUCTIVE JAUNDICE

What may prove to be an important contribution to the diagnosis of obstructive jaundice has been made by the trial of percutaneous transhepatic cholangiography in which a few millilitres of 75 per cent iodiode are injected directly into an intrahepatic bile passage (Nurick Patey and Whiteside 1953).

The method is capable of giving excellent and often diagnostic X-ray pictures when obstruction to the common bile duct is present, but in the absence of chronic obstruction, no filling of the biliary system with dye in sufficient concentration for radiography is likely to occur (Figs 45 a and b).

The examination is not without risk, however, one patient in the series recorded by Patey and his colleagues dying as the result of intraperitoneal leakage of bile and blood. In these authors view this risk is lessened if routine treatment with Vitamin K is instituted before the investigation, and the test delayed until prothrombin readings are satisfactory. Furthermore, the amount of dye injected should be limited to 20 mls and in the event of clinical evidence of leakage of bile into the peritoneum after the injection early laparotomy and drainage should be carried out.

Patey and his colleagues describe their technique in the following words —

The procedure was performed on in patients in the X-ray department after a preliminary injection of morphine. The site for the injection was the anterior abdominal wall close to the right costal margin and about 1½ to 2 inches from the ensiform cartilage.
This area was anesthetized with 2 per cent novocain and a graduated needle 12 cm long and 1 mm in external diameter, fitted with a sight feed and stylet was introduced backwards slightly upwards and to the right until it was felt to enter the liver. This was confirmed by noting that the needle moved with respiration. The stylet was then removed and a 20 ml syringe containing saline connected by a rubber tube fitted with adaptors. The needle was slowly advanced while an assistant maintained suction on the syringe. When as frequently happened a portal radicle was entered the blood was washed out of the sight feed by injecting a few millilitres of saline. Suction was also maintained during withdrawal of the needle. If no bile was detected the needle was reinserted in a slightly different direction the stylet being occasionally inserted to make sure that the needle was not blocked. When a bile duct had been located a few millilitres of 35 per cent diiodone were injected and a check radiograph taken to confirm that the biliary tree was
filling Twenty ml of 35 per cent chlortet was then injected slowly under screen control and the needle withdrawn. A series of radio graphs were then taken including some in the erect posture.

HYPERINSULINISM AND ISLET CELL TUMOURS

The phenomenon of episodic hyperinsulinism and hypoglycaemia was first described by Harris in 1924, and in the same year W. J. Mayo removed a malignant tumour from the tail of the pancreas which proved on investigation to originate from the islet cells of Langerhans. Five years later Graham of Toronto removed a spherical islet cell tumour from the body of the pancreas and thereby cured a patient subject to attacks similar to those described by Harris. Whipple (1944) reviewed 144 cases of islet cellled
tumours occurring in patients with hypoglycaemia and in 1922 recorded his personal experience with the surgical treatment of 39 patients.

The characteristic features of recurrent hyperinsulinism and hypoglycaemia are threefold ('Whipple's triad')

Firstly attacks of hypoglycaemia secondly the finding of a blood sugar of 50 mg per cent or less at the time of the attack, or after a twenty-four hour fasting period, and thirdly prompt relief from the ingestion of glucose.

The attacks of hypoglycaemia are of varied intensity. They are liable to come on during the fasting period before breakfast or after severe mental or physical effort when the sugar reserves are low. They are grouped by Walder (1913) under three headings (a) Those relating to disturbances of the vegetative system—nausea, sweating, pallor, flushing, chilliness, syncope (b) those relating to the nervous system—restlessness, tonic or clonic muscle spasm, opisthotonos, convulsions and (c) psychic disturbances such as apprehensiveness, confusion, disorientation, mania, unconsciousness and coma. Whipple's first six cases were referred by neurologists.

Less frequently digestive disturbances and pain also occur. In longstanding cases mental deterioration may become severe and permanent with degenerative changes in the central nervous system. Extreme obesity may also develop.

These manifestations (Whipple's triad) are due to hyperinsulinism—they may occur of course when an overdose of insulin is given—and result from over-production of insulin either by overactive normal glands by hyperplastic islet cells or by tumours of islet cells. The last is the most common cause and the spasmodic nature of the attacks is probably explained by the intermittent lack of control over secretion from the cells of the tumour.

The tumour itself may be simple or malignant but microscopy is often incapable of making the distinction which is usually only made possible by the occurrence of malignant infiltration of structures around the pancreas or the presence of secondary deposits in the lymphatic glands or liver. Less than 10 per cent behave in this way (Morley 1952). The tumours themselves are usually round bodies of some 2 cm in diameter (the size bears little relation to the severity of symptoms they may cause) and are of a more reddish hue than the normal pancreas surrounding them, being covered by enlarged and dilated blood vessels. They may be multiple (12.6 per cent Howard and others 1950) and may occur anywhere in the gland but are found most frequently in the body and tail where islet tissue is most abundant. They—more than
the normal pancreas and can be differentiated from it by palpation. Microscopically much variation is shown—from a typical adenomatous appearance to one showing scattered collections of islet cells in a degenerate fibrous stroma. The cells may be poorly differentiated and their appearance suggestive—but not pathognomonic—of malignancy. The early concept that the tumours were β-celled adenomatous is now discarded for it is almost impossible in most specimens to identify the cells with sufficient precision to justify the appellation. Holmes, Sworn, and Edwards (1946) doubt whether the tumours are adenomatous and think it more probable that they are examples of hyperplasia. It is of interest to note that such islet cell tumours may be present in the pancreas without giving rise to symptoms of hyperinsulinism. On the other hand, exploration has sometimes failed to reveal the presence of localized adenomatous even when the clinical picture is typical. In many cases, however, adenomatous have been found at re-operation or on detailed examination of the part of the pancreas removed at operation or at post mortem on operation fatalities. The most careful palpation of the pancreas is needed to reduce the number of missed tumours to a minimum and this applies especially to the head where most of the re-operation tumours have been revealed. The duodenum should be mobilized so that a finger can be passed behind the pancreas, and the head of the latter palpated between that finger and the thumb. Similar examination (made possible by incising the peritoneum at the lower edge of the pancreas) should be made of the head and tail. As the tumours are sometimes multiple the surgeon should not be satisfied with the finding of one but should examine the pancreas thoroughly to exclude the presence of others. The tumours should be removed completely with a narrow margin of pancreas around them. If no tumours are found in a case presenting the typical syndrome, resection of 1/4 to 1/5 of the pancreas (from the tail end) is recommended.

Presumably in some of the cases in which no tumour is found and yet which benefit from operation the condition is due to overactivity of normal cells. In others adenomatous may be found on careful dissection of the portion of pancreas removed at operation. Maxeiner and Bundy (1945) describe 9 such examples. In 9 cases explored a second time Whipple found that all had tumours which were missed at the first operation. Most of them were in the head of the pancreas. Persistence of blood sugar below 60 mg per cent after partial pancreatectomy is strong evidence that an adenoma has been overlooked. Sometimes the tumour is extrapancreatic—one has been described situated on the duodenal wall—another
adjacent to the inferior border of the pancreas, a third growing from aberrant pancreatic tissue in the liver, and a fourth in the gastro splenic omentum.

Islet cell carcinomas may behave similarly, although not all produce hyperinsulinism. Some tumours diagnosed microscopically as carcinomas may have been simple because the patient remained free from recurrence of symptoms for years after their removal.

Unfortunately hypoglycaemia may occur from other causes the pancreas being normal and there is no sure way of distinguishing between patients who have tumours and those who have not. It has been described for example, in toxic hepatitis of various types in pituitary tumours in hypothyroidism and hyperthyroidism as a complication of Addison’s disease and in various psychoses. It may occur in otherwise healthy subjects—even athletes—as hypoglycaemia of effort and also in subjects with a low renal threshold for glucose. In spite of a certain margin of error, however, operation is advised if Whipple’s triad is present, for the results in most cases are brilliantly successful in contrast to the results of medical treatment. Administration of sugar and other carbohydrates to control recurring insulin shock results in great obesity and if continued for a lengthy period converts the patient into a fat operation risk prolonged hypoglycaemia has a tendency to cause mental deterioration and anxiety neuroses and there is much uncertainty as to how soon a benign islet cell tumour may show malignant change.

For the operative approach a transverse incision is recommended with a vertical limb in the mid line passing upwards if exposure is difficult. Access to the pancreas is obtained either through the gastrohepatic omentum or the gastrocolic omentum whichever seems the better in the individual case.

Exposure of the pancreas should be complete so that it may be examined thoroughly. Haemorrhage will be troublesome, but every effort must be made to stop it completely before closing the abdomen. A drainage tube is essential for some temporary leaking of pancreatic secretion may occur.

CHRONIC RELAPSING PANCREATITIS

Chronic relapsing pancreatitis in which there is frequently an alcoholic history is a condition in which fibrosis spreads progressively throughout the whole gland with a tendency to the formation of cysts which may become very large. Calcification may develop and the condition may be associated with stones in the pancreatic ducts.
In the most severe cases, relapses are frequent and malnutrition is progressive and respiratory tract infection or tuberculosis is a frequent terminal event. The serum amylase is usually raised particularly during relapse but its level is subject to wide variations.

The etiology of chronic relapsing pancreatitis is not known but the consensus of opinion is that reflux along the pancreatic duct is a probable causal factor in many cases. Where no discernible disorder is present in the biliary tract it is thought that reflux may be due to spasm of the sphincter of Oddi which Mallet Gau (1919) and Love (1952) have been able to demonstrate at times by cholangiography at operation (Fig. 37).

The predominant symptom is pain, radiating to the back which may be constant and severe and quite unbearable during a relapse. It is the presence of this symptom that has led to the attempts to obtain relief by surgery. Because of varying appreciations of the etiology many different surgical approaches have been made, which may be summarized thus—

(a) Partial or total pancreatectomy
(b) Operations upon the biliary tract designed to reduce tension—
 1. By-pass operations e.g. Cholecysto-enterostomy
 2. Section of the sphincter of Oddi
 3. Prolonged external drainage of the common bile duct
(c) Vagotomy to reduce pancreatic activity and spasm of the sphincter of Oddi
(d) Sympathectomy primarily for the relief of pain

It is clear however that the first essential in the operative treatment of pancreatitis is a detailed exploration of the bile ducts and gall bladder and the treatment on its merits of any pathological condition found. In the absence of gross disease evidence of sphincter spasm will be given by the presence of dilatation without change in its texture of the common bile duct a condition which may be confirmed if radiological facilities exist by cholangiography. The choice of operation then appears to be cholecysto-enterostomy or choledocho-enterostomy for either of which many surgeons prefer an end to end anastomosis with a Roux fashioned jejunal limb. The advantage claimed for this complicated procedure over anastomosis to a jejunal loop is that it reduces the hazard of ascending biliary infection.

Total pancreatectomy can rarely be considered, for apart from relief of pain which should be attempted by less radical measures the patient is no better off for the consequences of loss of the whole pancreas results in severe and protein malnutrition and in many cases, surgical diabetes. Occasional good results are reported
after partial pancreatectomy but as the condition usually affects the whole pancreas its application is extremely limited. Purely for the relief of pain the best results are to be obtained from sympathectomy. There is considerable difference of opinion however as to the extent of the operation and as to whether it should be bilateral or on the right side, or on the left. Mallet Guy and Beaujeu (1952) perform splanchnicectomy only, and upon the left side. They believe that this operation has a curative effect by reducing the tendency to oedema and claim a good result in thirty of thirty five operations.

Cogswell (1951) recommends the thoraco lumbar operation including 8 cm of the greater splanchnic nerve. Rack and Elkins (1950) who incidentally failed to obtain any improvement by vagotomy recommend bilateral sympathectomy from T10 to L1 and point out that the operation while relieving the pain will not affect the course of the disease. de Takats and others (1950) recommend splanchnic nerve section, and excision of dorsal sympathetic chain from ninth to twelfth segments. Ray and Console (1949) recommend bilateral resection of the greater splanchnic nerves and all other nerve fibres connecting the celiac plexus with the lower thoracic and upper lumbar sympathetic chains.

The essential is division of the greater splanchnic nerve which may be achieved below the diaphragm and should usually be bilateral. This operation may also be effective in relieving pain due to pancreatic cancer.

References

Cancer

BRUNSCWIG A 1942 Surgery of Pancreatic Tumours Kumpton London
BRUNSCWIG A 1944 Ann Surg 120 406
CATTELL R B and PYTHER E J L 1949 Ann Surg 129 840
DILL PUSSELL A S 1952 Lancet i 539
D OFFAY M J 1946 Brit J Surg 34 116
ILLINGWORTH C F W 1951 Ann R Coll Surg 8 53
INGEBRIGTSEN R and LANGFELDT E 1952 Lancet ii 270
KIRKLAND H B 1951 Amer J Surg 82 451
MILLER E M and CLAGETT O T 1951 Ann Surg 134 1013
PATEL J ARSAK M and REDOR M 1951 Pr med 59 1267
PROBSTEN J C, SACHAR L A and RINDSEKOFF W 1950 Surgery 27 3-6
SMITH R S 1953 The Surgery of Pancreatic Neoplasms Livingstone Edinburgh
SMITH R S 1953 Ann R Coll Surg 12 306
Obstructive Jaundice
NURICK A W, LIATIS D H and WHITMORE C G 1943 Brit J Surg 41 2

Hyperinsulinism and Islet-Cell Tumours
HARRIS S 1924 J Amer med Ass 83 729
HOWARD J M, MOSS H H and RHOADS J W 1940 Internat Abstr Surg 90 41 in Surg Gynec Obstet May 10 0
MAXFINER N R and HENDY H I 1944 Surgery 18 171
WHITLLE A O 1944 Surgery 16 280
WHIPLE A O 1942 Canad med Ass J 66 734
WILDER J 1943 Amer J Digest Dis 10 428

Pancreatitis—relapsing
COCKSWELL H D 1941 Amer Surgeon 17 200
LOAF R J McN 1952 Brit J Surg 40 214
MALLEY P 1949 J Med Lyon 30 899
MALLEY P and BRALLER M J DL 1952 Lyon chir 47 31
MOWAT J K 1951 Med J Aust 1 824
HACK J J and FLEINS C W 1940 Arch Surg 61 937
RAY B S and CONSOLI A D 1949 Surg Gynec Obstet 89 1
CHAPTER XI
√ THE SPLEEN
HAROLD C EDWARDS

During the past decade fresh concepts of the part played by the spleen in blood disorders have quickened interest in the possibilities of splenectomy, and we are greatly indebted in this respect to American observers prominent among whom are Dameshek and Doan.

Function

To day at least some of the functions of the spleen are known beyond reasonable doubt, and these include the following —

1. The production during foetal life of all types of cellular elements of the blood and the power to return to this activity should the need arise during later life as it may in disorders leading to destruction of the bone marrow.

2. The elimination of effete red blood cells from the circulation.

3. Control of the activity of the bone marrow.

In disorders of such functions the spleen may clearly be responsible for some of the blood dyscrasias or for aggravating them and the term 'hypersplenism' is used to indicate an increase in the spleen's activity in respect of (2) and (3).

The reverse state 'hyposplenism' is not descriptive of any clinical condition for extirpation of a normal spleen is not usually followed by any appreciable consequences to health. It is indeed becoming increasingly the practice of the surgeon to remove the spleen during an operation in the splenic region merely because its presence may embarrass him. It may be argued that this is carrying contempt for the normal spleen a little too far for there is a much increased tendency to thrombosis after splenectomy which may find expression in thrombosis of the splenic vein with spread to the portal or superior mesenteric vein. Quan and Castleman (1949) record 6 such sequels to 70 splenectomies incidental to other operations.

There is too a possibility that infections are less readily resisted by a patient whose spleen has been removed. It is known that the resistance of splenectomized rats to infection by bartonella is
HYPERSPLENISM

reduced and there is evidence that resistance to cancer may also be lessened in laboratory animals by splenectomy. There is also evidence in man that splenectomy impairs resistance to malaria.

Hypersplenism

Monitz (1948) interprets hypersplenism as a functional state characterized by anaemia, leukopenia, thrombocytopenia or any combination of these three peripheral deficiencies associated with a normal or an increased amount of precursor cells in the bone marrow. He considers that it can be primary or secondary. In the former circumstance, removal of the spleen should cure, in the latter it should ameliorate. The matter, however, is not quite so simple as this for in addition to exerting to excess its capabilities of hemolysis and suppression of the bone marrow, the spleen may revert at the same time to its prenatal function of producing new red cells to take the place of the dead ones—rather like he who robs the poor and gives to charity to expiate his crime.

There is some doubt about whether hemolysis, or interference or suppression of haemopoiesis, is the only or the major factor in hypersplenism. More is certainly known of hemolysis than of suppression and the role of the spleen in its causation can be better gauged.

The life of the red cell in health is probably about 120 days. If its life span is appreciably curtailed, anaemia will result unless the bone marrow can overwork itself to compensate. If an anaemia results from this cause and is associated with a large spleen, splenectomy will probably restore the life of the red cells to normal. One might add that the larger the spleen the more assured can one be of the favourable outcome of its removal.

The presence of severe haemolytic crises is usually obvious and details of diagnosis need not be recapitulated here. But the existence of lesser degrees of haemolysis is more difficult to determine and for this the services of the clinical pathologist may be needed. Latent, that is to say, subclinical haemolysis can be determined by the fecal estimation of urobilinogen, the Ashby technique of transfusing compatible but agglutinatively separate cells, or by the use of tracer elements.

Hypersplenism may affect all three of the circulating elements—erythrocytes, leucocytes, and platelets—simultaneously, causing pancytopenia, or it may affect only one or two of these elements. If the red cells are chiefly affected, anaemia results if the white cells leukopenia if the platelets, thrombocytopenia. As the leukopenia is due mainly to reduction of the numbers of white cells...
produced by the bone marrow and the predominant loss is of polymorphs the term neutropenia is often used.

Attempts have been made to classify the blood dyscrasias in which hypersplenism plays a part on this basis and the following classification is modified from the one suggested by Coller et al. (1950) more to suggest the possibilities of such a classification than to establish it.

Red Cells (Anæmia)

1. Familial hemolytic anæmia
2. Acquired hemolytic anæmia
3. Latent (or occult) hemolytic anæmia associated with other diseases—e.g. the leukæmas

White Cells (Neutropenia)

1. Primary
2. Felty's syndrome (leukopenia with splenomegaly associated with rheumatoid arthritis)

Platelets (Thrombocytopenia)

1. Primary or essential thrombocytopenic purpura
2. Purpura secondary to or associated with other conditions—e.g. sepsis, drug poisoning, and the leukæmas

All Elements (Pancytopenia)

1. Primary hypersplenism
2. Some examples of refractory or hypoplastic anæmia
3. Banti's syndrome
4. Associated with other splenomegaly disorders—e.g. Gaucher's disease and myelosclerosis

1. The Anæmas

Spleenectomy is uniformly successful in eliminating the tendency to the hemolytic crises of familial hemolytic anæmia and may safely be recommended at an early age. The youngest patient—and the severest case—in the author's experience was of a female infant nine months of age. In older people in whom the disease has never been marked by crises the patient may come to operation because of symptoms provoked by gall stones, which invariably develop as age advances. The stones are pigment stones and may be opaque to X-rays. Though usually small they may grow to the size of poker dice and be similarly faceted. Changes in the gall bladder itself are usually not marked. If stones are discovered at operation for splenectomy they should be squeezed into fine granules and expressed via the cystic duct or the gall bladder incised and the stones removed followed by repair of the gall bladder. Only in older people in whom there is evidence of chronic cholecystitis or in whom the stones are of large size is cholecystectomy required.
Occasionally in familial hemolytic anemia no abnormal fragility of the red cells can be demonstrated and no spherocytes found in the circulating blood. In spite of this splenectomy is indicated.

The effect of splenectomy for acquired hemolytic anemia is unpredictable. In some it confers immediate benefit; in others improvement follows after a prolonged latent period and in others it fails. Before considering splenectomy every effort should be made to discover and eliminate the cause for the hemolysis. In cases where hemolysis is severe, the administration of ACTH or cortisone may be of value in causing a sufficient remission of the symptoms to permit splenectomy to be carried out without risk (Lancet 1951).

Latent hemolysis is frequently found both in lymphatic and in myeloid leukemia and where this can be demonstrated, splenectomy will have the effect of restoring the life of the red cell to a more normal duration and much of the patient's vigor, though it does not otherwise influence the inevitable fatal course of these diseases. As Berlin (1951) pointed out the benefit to be expected from splenectomy is usually proportional to the size of the spleen, an observation which holds good for all types of hypersplenism.

2 The Leukopenias

The term primary neutropenia was suggested for leukopenia associated with splenomegaly by Wiseman and Doan (1942). Though the exact nature of the condition is not understood it is probably related to reticuloendothelial hyperplasia. The blood examination shows a degree of anemia but a leukopenia out of all proportion to the red cell deficiency. The lymphocytes may be relatively unaffected and may constitute well over 90 per cent of the total leukocytes. The neutrophils, however, are few in number and degenerate. The platelet count may be normal. Splenectomy in this condition will result in a marked improvement in health with a return to a more normal level both in quantity and quality of the neutrophils.

Allied to this condition is that of Felty's syndrome in which splenomegaly with neutropenia is associated with rheumatoid arthritis. Splenectomy may lead to improvement both to the blood picture and of the rheumatic condition.

3 Thrombocytopenia

Primary or essential thrombocytopenia usually responds well to splenectomy, which should be practised in all but the less serious cases. Patients subjected to splenectomy may never secure complete
normality but live in reasonable health, and are freed entirely from the danger of spontaneous bleeding. If a poor response to splenectomy is obtained it is probable that a splenic nuculus or hidden accessory spleen (Curtiss and Movitz 1940) escaped attention at operation.

The effect of splenectomy in thrombocytopenic purpura in adults particularly in those without a previous history suggesting that the disease is latent is variable. On the whole it is more likely to be effective if the spleen is much enlarged when the effect may be dramatic. In some there may be a period of some months before any appreciable effect upon the platelet count is observable.

None the less, in spite of the uncertainty of the ultimate outcome splenectomy should usually be advocated for a severe purpuric crisis of apparent spontaneous origin when it may be life saving. It should be regarded as an emergency procedure and performed as soon as adequate preparation has been made. Patients have probably lost lives as a result of delaying the operation until to morrow. The same may be said of a purpuric crisis secondary to or symptomatic of conditions such as Hodgkin’s disease. It goes without saying that ascertainable causes of purpura such as sepsis drug poisoning etc should be eliminated, for which splenectomy should be considered only as a possible means of saving life during a severe crisis.

4 Pancytopenia

A reduction of all cellular elements associated with splenomegaly but with no other abnormality has been described as a primary hypersplenism—but such a condition is extremely rare. Nearly all examples of pancytopenia associated with splenomegaly are expressions of a more generalized disease e.g. Banti’s disease (which now must be considered under portal hypertension) some examples of refractory or hypoplastic anaemia, Gaucher’s disease, sarcoidosis, Hodgkin’s disease and finally those obscure conditions labelled myelosclerosis and myelofibrosis.

The indication for splenectomy in such diseases depends entirely upon establishing the existence of haemolysis and over the question of operation the surgeon will naturally act under the guidance of the haematologist.

Technique of Splenectomy

However large the spleen adhesions are rarely encountered in operating for the conditions mentioned above, and splenectomy can safely be performed through the abdominal route.
the chest is rarely if ever necessary. An important step in technique, particularly when the spleen is large is to expose and ligature the spleenic artery by entering the lesser sac through the gastrocolic omentum before attempting to deliver the spleen.

References

Berlin B 1941 Acta med scand suppl No 2 12
Collins F A, Blain A and Andrews G 1940 Indications for and Results of Spleenectomy Illinois
Curtis G M and Mottitz D 1948 Ann Surg 123 276
Dawson W and Bloom V I 1944 Blood 3 1381
Doan C A and Wright C S 1946 Blood 1 10
Edwards H C 1941 Lancet 1 501
Gray C H, Muir I M H and Neuberger A 1949 Biochem J 47 542
Lancet 1941 ii 163
Mottitz D 1949 Chicago med Sch Quart 11 3
Quan S and Castleman B 1949 New Engl J Med 240 830
Wiseman B K and Doan C A 1942 Ann intern Med 16 1097
CHAPTER XII

PORTAL HYPERTENSION

R. MILNES WALKER

Relation to Banti's Syndrome

It is only recently that the significance of a high pressure in the portal circulation and the part it plays in what has been called Banti's Syndrome has come to be fully realized. There are a number of abnormal conditions under the title of Banti's syndrome and difficulties have arisen when cause and effect have been confused. Banti thought that in the disease which he described the original source of the complaint was in the enlarged spleen and fibrosis in the liver and consequent ascites occurred at a later stage. We now know that in some cases the liver is normal throughout the course of the illness and in these cases there is obstruction to the portal blood flow before it reaches the liver—pre-hepatic obstruction—while in others the syndrome is caused by disease of the liver—intra-hepatic obstruction. These cases suffer not only from the effects of the portal hypertension but also in varying degree from the effects of disturbance of liver function. Finally, there is a group in which the obstruction to the circulation is post-hepatic i.e. in the hepatic veins (Budd-Chiari syndrome) or the result of cardiac disease or constricitive pericarditis. Here the portal hypertension is subsidiary to the primary disease but this possibility must be borne in mind when making a diagnosis for in these cases treatment must be directed to the cause. One constant feature of all cases is enlargement of the spleen and then this organ may exert an abnormal influence on blood formation—a secondary hypersplenism—commonly taking the form of a leucopenia which when severe may be an indication for splenectomy.

Pathology

Pre-hepatic Obstruction Here there may be obstruction to the flow of blood in the portal vein itself or the obstruction may be in the splenic vein in which case the term splenic hypertension is more appropriate thus reserving the title portal hypertension for those cases in which the whole of the portal circulation is affected.
In many of these cases the obstruction is due to pressure on or invasion of the vein by a tumour and in such cases treatment is directed to the cause—the same applies to thrombosis in these veins when it is part of a generalized disease. Rarely the obstruction may be due to fibrosis, the result of trauma or inflammation, but in actual practice nearly all cases of pre-hepatic obstruction causing portal hypertension for which treatment is required are congenital in origin, either a structure or atresia of the vein, or more commonly the condition known as cavernomatous transformation of the portal vein in which the vein is replaced by numerous dilated and tortuous channels.

Intra-hepatic obstruction is caused either by fibrosis in the liver or pressure resulting from fatty infiltration or regeneration nodules, and there is evidence to suggest that in Great Britain many of these cases follow an attack of acute infective hepatitis or homologous serum jaundice. There is no evidence (Cerrard 1952) that it follows haemolytic disease of the newborn. Disturbance of liver function varies from case to case—some patients with grossly cirrhotic livers and severe deterioration of liver function have normal portal pressures, while others with only slight fibrosis usually show no evidence of damaged liver function by the usual biochemical tests but may have very high portal venous pressures. The rate of progress of the disease and the portal venous pressure probably depend on the distribution rather than the amount of fibrosis in the liver (Walker 1952). The gross pathology of the liver is extremely variable; there may be fine fibrosis which does not distort the shape of the liver but gives it a granular appearance and a consistency which is only slightly firmer than normal. In such cases the portal pressure is high and both the spleen and the splenic vein are much enlarged. Histologically, there is fibrosis in the portal tracts and often fine fibrous strands linking up the portal tracts with each other. Liver function tests show no abnormality.

At the other extreme is the hepatic liver grossly distorted in shape, hard in consistency and with much fibrous tissue causing the parenchyma to be split up into isolated islands. The spleen is not so greatly enlarged but there are likely to be signs of defective liver function. In general this type occurs in older patients, but the clinical evidence does not suggest that it is a later stage of the former type. It represents post-necrotic scarring following some condition which has caused destruction of liver tissue. The presence of ascites, however, is always evidence of interference with liver function for high portal pressures may be present without ascites, though such a raised pressure may aggravate ascites already due to
liver dysfunction. Distinct from these is a group in which the liver is swollen and congested with little or no fibrous tissue. Finally, certain specific diseases of the liver e.g., hemochromatosis and schistosomiasis may cause portal hypertension.

Portal Venous Pressures

The normal portal venous pressure in man is between 100 and 160 mm of water and the factors which influence it are imperfectly known. If, during the course of an operation, the portal vein is occluded, the pressure rapidly rises to about 600 mm of water. Cases have been recorded (Child et al. 1952) in which the portal vein has been ligatured at operation for resection of the pancreas but the follow-up was short and in most of them a gradual obstruction of the vein had already been caused by the tumour. In dogs sudden ligation of the portal vein causes rapid death but gradual occlusion of the vein induces the development of an adequate collateral circulation and no evident portal hypertension results (Douglas et al. 1951). In man life is possible after gradual but complete occlusion of the portal vein by thrombus but in such cases the portal pressure is dangerously high and the risk of hemorrhage is great.

Collateral Circulation

The effect of portal hypertension is to open up the collateral vessels which normally exist between the portal and systemic circulations. These are all beneficial to the patient with the exception of the varices in the submucous layer of the oesophagus and cardiac end of the stomach. In this situation they are liable to rupture and cause serious haematemesis or melena as the mucosa over them becomes thinned and is readily damaged either by trauma of food particles or erosion by gastric juice. In long-standing cases the appearance as seen through the oesophagoscope suggests that in time epithelial hypertrophy may ensue for the varices may be covered by an opaque white epithelium.

Collateral veins in the falciform ligament also become enlarged (Fig 46) and occasionally there is one single large vein coming from the left branch of the portal vein and penetrating the linea alba. The flow in this vein may cause a murmur and palpable thrill, this constituting the Cruveilhier Barmtraten Syndrome (Fig 47). The enlarged veins in the anal canal—causing internal haemorrhoids may draw attention to the patient's condition by bleeding but the loss of blood from this cause is rarely serious.

When portal hypertension exists there is a liability...
in the portal vein and its tributaries so that a pre hepatic as well as an intra hepatic obstruction exists and these veins may be rendered useless for an anastomosis.

Clinical Aspects

Clinically these patients present with bleeding from oesophageal varices portal hypertension causing about 10 per cent of all cases of serious haematemesis. Patients with cirrhosis of the liver may have ascites but the portal pressure is not raised in all cases of cirrhosis. The attacks of haematemesis may follow each other in rapid succession though some patients may go for many years in apparently perfect health between successive attacks. But when gross cirrhosis is present the condition is serious for half the patients die within a year of their first bleeding. The spleen is always enlarged and usually palpable and dilated veins in the abdominal wall may be visible. When haemorrhage occurs the blood may all pass down the alimentary canal and cause melena and the patient may complain only of lassitude, faintness or pallor. When the
obstruction is pre-hepatic the liver is normal but in the intra-hepatic obstruction group the liver is unduly firm and may be palpable.

Diagnosis rests pre-eminently on the demonstration of varicose veins in the submucous layer of the oesophagus or cardiac end of the stomach for which a barium swallow is of the utmost value the varices showing as rounded filling defects in the lower part of the oesophagus or in severe cases extending up to the cervical portion. If the appearance on X-ray is not conclusive an oesophagoscopy should be performed and by this method the blue varicosities can easily be seen and the level to which they rise determined. In the absence of oesophageal varices a diagnosis of significant portal hypertension can be excluded. Many cases can be diagnosed before they have their first hematemesis because an enlarged spleen is found either on routine examination or if the patient seeks advice on account of lassitude or other vague symptoms. Thus a search for oesophageal varices should be made in any patient with an enlarged spleen which is not otherwise readily accounted for.

The diagnosis between intra- and extra-hepatic obstruction is not always easy. If there has been a previous history of jaundice or if there is evidence of disturbance of liver function the case can be presumed to be intra-hepatic. My experience of 10 cases of extra-hepatic obstruction is that in all of them the bleeding commenced before the age of twenty. Portal venography, to be described later, may be helpful in localizing the site of the obstruction. As already mentioned thrombosis of the portal vein may add an extra hepatic obstruction in a case of intra-hepatic disease.

Investigations

When the diagnosis has been established there are certain investigations which are necessary before the best course of treatment can be advised.

Liver Function Tests Some idea of the state of the liver can be gained by clinical examination. Muddy complexion, spider naevi, and ascites indicate a defective liver but biochemical tests are helpful and as a routine we make use of differential serum protein estimations, alkaline phosphatase level, thymol turbidity and flocculation tests. In some climes much reliance is placed on the bromsulphathalein excretion rate. If the serum albumen is below 2.5 gm per cent or is lower than the globulin level or if any of the other tests show gross abnormality caution in recommending any major surgical procedure must be exercised. The results of
Fig 48 Portal venogram by intra-splenic injection showing little filling of the liver but filling of the left gastric vein and oesophageal varices.
Fig 49 Portal venogram by intra-splenic injection six months after end to side porta caval anastomosis showing no filling of the collaterals but some filling of the inferior vena cava. Arrows indicate site of anastomosis.
trying to improve the liver function by a high protein low salt diet have been disappointing

Blood Count This investigation which must include a platelet count, is necessary to exclude any effects of hypersplenism, a mild leukopenia is not of importance but severe anaemia or a low platelet count need correction and may be evidence of hypersplenism indicating that a splenectomy should be undertaken as part of the treatment.

Intravenous Pyelogram If a spleno renal anastomosis is contemplated this should be done to ascertain the position and function of the kidneys.

Portal Venography This valuable method of demonstrating the site of obstruction in the portal venous system by injection of opaque fluid into one of its tributaries has been used with great advantage, but has the drawback that it can only be carried out at laparotomy. Recently the investigation has been widened in its scope by injection of the opaque medium into the substance of the spleen. This can be done under local anaesthesia, and gives excellent outlines of the splenic and portal veins (Figs 48 and 49) (Leger 1951, Boulin et al. 1951, Drevi and Buditz Olsen 1952). It may not be entirely without risk so it is not advised as a routine. We have had one case of rupture of the spleen requiring splenectomy three days after a portal venogram in which the injection was made into a normal spleen at operation for another condition. It should be undertaken if the case is suggested to be one of extra hepatic obstruction or if there is reason to suspect that the portal vein may be thrombosed secondary to cirrhosis of the liver (Walker et al. 1953).

Pentoneoscopy In a small group of cases this examination is useful in order to study the gross pathology of the liver. Particularly if any operative procedure is contemplated when ascites is the main symptom. It is also of value in estimating the size of the spleen, e.g. in fat patients where palpation is difficult.

Liver puncture biopsy has little place in the investigation of portal hypertension itself but may be useful if one of the less common causes of hepatic fibrosis e.g. haemochromatosis or schistosomiasis is suspected.

Every case of suspected portal hypertension should, therefore have a barium swallow liver function tests and a blood count while other investigations may be called for in particular cases.

Surgical Treatment

The aim of surgical treatment of portal hypertension is to prevent death or serious incapacity from haemorrhage as a result of rupture.
of oesophageal or gastric varices. In the majority of cases the bleeding comes from the oesophagus where the pressure in the lumen is lower than in the stomach and the varices are less well supported and more exposed to trauma. Surgical measures are advised in younger patients with good liver function if large varices are present even if bleeding has not already occurred. There is no conclusive evidence that ascites is benefited by surgical measures; the formation of ascites in patients with hepatic fibrosis is such a variable symptom—it may disappear when no treatment whatever is undertaken—that it is very difficult to assess any results of particular forms of therapy. It is always an indication of severe liver damage and major surgery in these cases is attended by a higher mortality.

There are two methods by which attempts are made to reduce the risk of haemorrhage:

1. By a venous shunt to reduce the portal venous pressure, and
2. By diverting the portal blood from these varices or excising the varix bearing area.
Both theoretically and in practice it seems that the former method is the most effective, but the venous anastomosis must be between a large vein of the portal system and a large low pressure systemic vein (Fig 50). Beswick and Butler (1951) have argued that venous shunts are ineffective because patients may die of hemorrhage even when a large natural collateral circulation as big as many shunts made by the surgeon has formed in the falseform ligament. This is of little use, however, because it does not end in a large low pressure systemic vein and so is not comparable with the artificial shunts. As in obstruction elsewhere the nearer the relief is to the site of the obstruction the more effective it is, thus the portal vein is the most valuable for such a shunt. If it is abnormal as in extrahepatic obstruction an alternative vein must be sought and the splenic is the largest available. Thus an anastomosis between the portal vein and the inferior vena cava or between the splenic vein and the left renal vein are most commonly made. Other veins have been used, but they are usually too small and the openings are liable to thrombose.

Before any operation for a venous shunt is made it is important that adequate blood should be available for transfusion. The danger lies not in loss of blood from the veins being used for the anastomosis (though there should be means of rapid replacement of blood in such an accident as a clamp slipping), but in the ooze of blood from the thin walled collaterals which may be encountered during the approach to the main veins.

Portal-systemic Shunts Porta-caval Anastomosis

A thoracoabdominal incision gives much the best access for this operation. The patient lies tilted towards his left side and the incision made in the right side along the line of the ninth rib from the posterior axillary line to a point just in front of the costal margin. The rib is resected and the costal cartilage incised longitudinally with a scalpel which allows for good repair of the costal margin during closure. Both the pleura and peritoneum are opened along the line of the skin incision and then the diaphragm split in the direction of its fibres as far back as the bare area of the liver. This allows the liver to be displaced upwards and gives good access to its under surface. Vascular adhesions may make the next step difficult but the peritoneum on the outer side of the upper part of the duodenum is incised and the duodenum displaced forwards. The mesentery in the peritoneum is carried upwards along the anterior margin of the foramen of Winslow to the ilium of the liver and laterally along the lower margin of the coronary ligament. The
portal vein is now looked for in the lesser omentum. If the common bile duct comes into view it is retracted forwards, but it may not be exposed. The portal vein usually can be separated easily from the surrounding connective tissues; but if it is adherent it indicates that there has been some thrombosis in it. One or two tributaries may be found entering the portal vein from the left side and they should be divided between ligatures otherwise they are liable to tear out of the portal vein.

A decision must now be made regarding an end-to-side or a side-to-side anastomosis. I prefer to divide the portal vein high up and make an end-to-side anastomosis to the inferior vena cava. This type of anastomosis causes less distortion of the portal vein and a more direct line of flow into the vena cava and I believe is less liable to thrombosis. There is no evidence that after an adequate side-to-side anastomosis any blood continues to flow up the portal vein into the liver, in fact it may even flow in the reverse direction. In any case this blind alley is likely to become thrombosed and the thrombus may extend down to and occlude the anastomosis. This cannot happen if an end-to-side anastomosis has been made. The portal vein should be freed up to its division into right and left branches so that separate ligatures can be placed on each branch as recommended by Stock (1951). When at least 3 cm of the portal vein have been isolated attention is paid to the vena cava and this must be exposed from the level of the right renal vein up to the liver and the whole of its anterior wall uncovered and cleared of adventitia.

Everything is now ready for the placing of clamps and making the anastomosis. A Blalock clamp is placed on the portal vein as low down as possible and ligatures on the upper end preferably on the two main branches. The vein is then divided just below the upper ligatures and washed out with citrate solution or heparin. A lateral clamp is now put on the inferior vena cava. I have found one or other of Brock’s clamps used for the atrial appendix in mitral valvotomy adequate for this purpose. An incision equal to the diameter of the portal vein is made in the inferior vena cava and anastomosis carried out with a single layer of evertting continuous silk sutures commencing at the upper end. There is no need to excise an ellipse of the wall of the vena cava. When complete the inferior vena cava clamp is removed first and any small leaks nearly always close after slight pressure. Occasionally an additional stitch is necessary. When the portal vein clamp is removed the flow of blood into the inferior vena cava can often be seen through the thin wall of the latter. A drain is inserted down to the site of
anastomosis and brought out below the costal margin and usually returned for twenty-four hours. The diaphragm is repaired and the chest closed without drainage after full expansion of the lung.

Spleno-renal Anastomosis

This is combined with splenectomy and is most conveniently performed through a left thoraco-abdominal incision. In removing the spleen great care is taken of the splenic vein; there is no need to isolate a long length of this vein from the tail of the pancreas but the two together must be mobilized and when it comes to an anastomosis a Brock's mitral valvotomy clamp can be put on them both. This avoids freeing much of the vein which is very liable to injury in the process and about 1.5 cm of free vein is adequate for making the anastomosis.

The renal pedicle is now dissected out and here at least 3 cm of the vein must be isolated. It is not necessary to put a temporary clamp on the renal artery unless the kidney becomes grossly engorged when the vein is clamped and in any case it should not be kept on for more than thirty minutes. Usually a Blalock clamp on the proximal end of the vein and controlling ligatures on the distal end or its two main tributaries is the most convenient, while either a bull dog clamp on the splenic vein or a Brock mitral clamp on the vein and tail of pancreas combined are satisfactory. The end to side anastomosis is made with the usual technique making a transverse incision in the renal vein.

Other sites for a portal systemic anastomosis have been used, but the only one requiring mention is a lateral anastomosis between the superior mesenteric vein and inferior vena cava (Blakemore 1951).

If there is difficulty in bringing the veins to be anastomosed together a vein graft may be inserted between them in the only case when I have done this thrombosis has probably taken place for there has been recurrence of haemorrhage.

Operations on Oesophageal Varices

Operations which aim at diverting blood from the oesophageal varices consist in the division of the large tributaries in the lesser omentum and in the wall of the stomach or oesophagus. Access is difficult from the abdomen owing partly to the frequent presence of vascular adhesions so a left thoracotomy is the best line of approach.

The pleura is opened through the ninth rib bed. Large veins are usually present on the outer surface of the oesophagus and the
veins accompanying the phrenic nerve and some of the lower intercostal veins may be dilated. Esophagogastronomy, as recommended by Phenster and Humphreys (1947) is a radical operation but such a drastic procedure may not be necessary and has the disadvantage of the esophagitis which so often follows.

The simplest procedure is esophageal transection—that is to say, division of the esophagus at the level of the hiatus and resuture after ligation of the larger varices— but this does not necessarily relieve the varices in the stomach. Alternatively, gastric transection as advocated by Tanner (1950)—best carried out by a trans thoracic approach splitting the diaphragm—may be considered but it is also important to divide the large veins on the lesser and greater curvature of the stomach

Other measures are ablation of the submucous varices by sutures after opening the esophagus without dividing it right across as advocated by Boercema (1949) and by Cullen (1950) ligature of all veins entering and leaving the thoracic esophagus (Allison 1950) or mediastinal packing to promote extra esophageal vascular adhesions (Garlock and Som 1950). No long series of cases treated by any of these methods has yet been reported and they must be regarded as experimental.

Injection of the varices with sclerosing solution through an esophagoscope has been employed (Crafoord and Frencher 1939) but the results are disappointing. In the same way attempts to reduce the blood entering the portal circulation by ligature of the splenic artery or by splenectomy are of no lasting value in portal hypertension and splenectomy is indicated only when the obstruction is in the splenic vein alone (spleenic hypertension). In portal hypertension splenectomy alone is strongly contra indicated as it may destroy the only vein suitable for a portal systemic anastomosis.

A new approach to the problem has been introduced by Rienhoff (1951) and by Berman et al. (1951) in the use of hepatic artery ligation for this condition with or without splenic artery ligation. The basis of this is the fact that ligature of the hepatic artery does bring about a fall in portal blood pressure probably because in advanced cirrhosis there is a much increased anastomosis between the hepatic artery and portal vein branches in the portal tracts so that some of the hepatic artery pressure is transmitted to the portal system. The risk of hepatic necrosis is less than occurs when the hepatic artery is accidentally ligatured in patients with normal livers but fatalities from this cause have occurred particularly if the artery is ligatured above its gastro duodenal branch. It may have some value in treating advanced cirrhosis with ascites, but
at present a venous shunt is preferable in those cases with good liver function who have had serious haemorrhages.

Results of Surgical Treatment

There are great difficulties in assessing the results of treatment of portal hypertension because many patients go for long periods between successive bouts of haematemesis and ascites is a symptom which may have long spontaneous remissions. All working in this field agree that repeated haemorrhages are very likely to prove fatal and that they are an indication for surgical treatment; there is less enthusiasm for operating when ascites is present and both the immediate mortality and late results are not so satisfactory. The evidence suggests that when a large venous shunt has been made and it remains patent the danger of serious haemorrhage is eliminated.

The risk of operation itself depends very much on the condition of the liver; for the most common cause of mortality is liver failure.

Except for the performance of portal systemic shunts there are no figures available on which an opinion of the results of surgical treatment can be formed. In my own series of patients 11 venous anastomoses have been performed on 40 patients. They fall into two groups—those performed before and those since January, 1950; when it was realized that a large opening was necessary and that adequate access to the portal vein could only be obtained through a thoracoabdominal approach.

<table>
<thead>
<tr>
<th></th>
<th>Before 1950</th>
<th>After January 1950</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Operative Deaths</td>
<td>Cases</td>
</tr>
<tr>
<td>Porta-caval anastomosis</td>
<td>2</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Spleno-renal anastomosis</td>
<td>11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Other vessels</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

The two operative deaths in patients who had had porta-caval anastomoses were due to liver failure both had defective liver function before operation. Two patients in the group operated on before 1950 subsequently died one—in whom the porta-caval anastomosis became thrombosed—of further haemorrhage and the other of hepatic failure. One patient operated on since 1950 has died of a subsequent haemorrhage in spite of the fact that his anastomosis was patent but one in whom a vein graft was used has had further bleeding.
Blakemore who has the largest experience of these operations and has carried them out on some patients with severe liver damage has created shunts 166 times on 160 patients with a mortality of 18 per cent; but in the last 107 cases the mortality has been only 8 4 per cent.

Stoeckl working in Hong Kong—where cirrhosis is usually due to nutritional causes and ascites rather than hemorrhage is the prominent symptom—reports encouraging results after end to side porta-caval anastomosis but advocates a preliminary splenectomy because in this type of case splenic vein thrombosis is a common complication and adds a local hypertonstion to the portal obstruction.

Gastric or oesophageal transections have been carried out without mortality on 16 patients on whom a venous shunt was not practical during the last three years. Recurrence of bleeding has taken place in 5 of them but so far there have been no subsequent deaths from this cause.

There is no doubt that experience of the operative measures employed brings improvement in the results and that a reasonably low mortality can be attained by the careful assessment of each individual patient but the operation should not be delayed until liver function has deteriorated or the main veins of the portal system are occluded by thrombosis.

References

ALLISON P R 1940 Ann Surg 122 808
BERMAN J A WULFBERG L P FISCH C and MÜNZ W 1939 Arch Surg 63 623
BESWICK T S L. and BUTLER H 1951 Brit Med Journ 1 522
BLAKEMORE A H 1931 Bull V l Acad Med 27 477
BLAKEMORE A H 1932 Surg Clin N Am 32 309
BOEREMA I 1949 Arch Chir Neerland 1 253
BOULIN R CHEVALIER M CALLUS P and NAGEL M 1951 Acta Chir Belg 50 534
CHID C G HOLSBOURG R M MCCLURE R D GORF A L and O'NEILL F A 1952 Surg Gyn and Obst 94 31
CRAGGS C and HENRICK R P 1939 Acta Otolaryngologica 27 422
CULLIG G 1930 Arch Surg 61 64
DOUGLAS T C MANN W H LANSBURY B F SWIGEER L L and TANTURI C A 1951 Arch Surg 62 789
DREYER B and BUTLER OLSEN O E 1952 Lancet 1 530
GERRARD J 1952 Brit Med Journ 1 1385
LEGER L 1951 Mem Acad Chir 77 712
LEFFERT D B and HUMPHREYS E M 1947 Ann Surg 126 17
RIEMÖFF W 1 1951 Bull John Hopkins Hosp 88 368
STOCK F F 1929 Ann RC $ 10 18
TANNER N C 1950 Proc Roy Soc Med 43 147
WALKER R M 1952 Lancet 1 29
WALKER R M MIDDLEMISS J H and NÜNSON D M 1953 Brit Journ Surg 40 392
CHAPTER VIII

REGIONAL INTESTIS

\checkmark CROHN’S DISEASE

HAROLD C. EDWARDS

Introduction

The suggestion that Crohn’s disease is of a sarcoid nature is no longer tenable. Great interest attaches to the work of Chess and his colleagues (1950) who by feeding dogs on talcum powder and on finely divided sand and rats on sand for a sufficient length of time and in sufficient quantity produced changes in the terminal ileum similar to those present in Crohn’s disease in the human being (Fig 51). Talc powder seemed to be more pathogenic than sand. Their conclusion that the ingestion by the ileal mucosa of insoluble particles of matter has an etiological bearing has given rise to the suggestion that the excessive use of modern tube tooth paste may possibly be a causal factor.
Clinical Features

Crohn's disease varies greatly in its manifestations. It may present in the form of an insidious fibrotic process without gross lymphadenoid change or it may develop rapidly, with emphasis chiefly on mucosal changes, accompanied by great swelling of the lymphatic glands and causing an acute febrile illness. Its behaviour follows no formal pattern. It may progress continuously and with increasing momentum or fitfully, with periods of relative quiescence. It may be dormant for many years—it has been known to recur twenty years after apparent cure by operation. It may resolve completely or with a legacy of permanent fibrotic changes in the bowel which is not incompatible with good health. Finally, its course may be profoundly influenced by emotional stress.

Though Crohn's disease may affect the oesophagus, the stomach, the duodenum or the jejunum, it is nearly always situated in the terminal ileum. Very occasionally, particularly in older people, it may commence in the colon or recto sigmoid. Usually when present in the terminal ileum it ceases abruptly at the ileo-cecal valve but in the more acute onslaughters it may soon spread distally to affect the ascending colon and a condition of ileo colitis may result which is hard to distinguish from that of ileo colitis which is regarded as being one of the types of ulcerative colitis.

Age Incidence

The disease is essentially a disease of young men and women though older people are not immune. In the latter the disease is usually well localized, presenting a clinical picture indistinguishable from an encircling cancer. A satisfactory outcome of excision may then confidently be expected.

The onset of symptoms is often in the late teens or early twenties. Most of the patients start their downward alimentary career before the age of twenty five. Most often with the removal of a so-called grumbling appendix or with the development of a perianal abscess. One of the author's patients had his gall bladder removed for cholelithiasis at the age of eighteen.

Mode of Onset

Knowledge of the existence of the disease often awaits laparotomy for symptoms simulating those of appendicitis of varying degree are present in at least half the patients and indeed in the majority of the youthful sufferers. It is for this reason that patients with Crohn's disease come under the care of the surgeon rather than that of the physician.
When the abdomen is explored for acute symptoms, the terminal ileum may be found reddened and oedematous with swelling of the mesenteric glands—acute ileitis. This condition may resolve completely, or may progress to the characteristic syndrome of Crohn’s disease which was the case in four of nine patients in the author’s series.

The condition of mesenteric lymphadenitis sometimes revealed at operation in young children, in which the terminal ileum may be pink from congestion, has probably a different aetiology. It is rarely if ever a precursor of Crohn’s disease.

In only one of eleven patients in the author’s series for whom exploration had been undertaken for vague abdominal symptoms was the appendix found to be involved. This patient’s surgical history is as follows: at eighteen years, fistula in ano; at twenty, recurrence of fistula; at twenty-one, appendicectomy; at twenty-three ileo colostomy followed by resection, and death four months later. Here was an example of the fulminating type of the disease.

Of ten patients, appendicectomy preceded any recorded changes in the ileum in five. It is important not to remove the normal appendix if Crohn’s disease is present, for this definitely increases the risk of fistula formation.

Diagnosis

A discernible clinical pattern emerges from the study of many case histories despite the vagaries of the disease. A young adult, usually of spare build, active habits and an alert mind, starts to suffer mild abdominal discomfort associated with diarrhea. The appetite becomes impaired, there is perhaps a little weight loss, and in female patients the menses may become irregular. The patient tires easily, suffers from bouts of depression, and powers of concentration diminish. Apart from a small degree of anaemia and perhaps a raised ESR with a little rise in evening temperature, investigation including X-ray is negative. There is some danger at this stage especially if the patient is a young woman, of diagnosing nervous dyspepsia.” Later, when symptoms become more persistent a mass may develop in the lower abdomen for which exploration is undertaken.

Some Leading Symptoms

Diarrhoea is nearly always present, especially in the young subject and though varying in severity from day to day is persistent. In most cases no deficiency of fat metabolism is to be found. Where such a deficiency is present it usually connotes
extensive involvement of the ileum and should be a deterrent to surgery.

Anemia is usually microcytic and of slight degree and tends to correspond in severity with the diarrhea. One of the author's patients developed a megaloblastic anemia following a short circuit operation (not exclusion). The anemia improved after an ileo-rectal anastomosis. Later this patient at the age of thirty-seven developed cancer of the lower end of the oesophagus from which she subsequently died.

Peri-anal abscess is too common an antecedent of Crohn's disease to be regarded as purely coincidental and if such an event is associated with vague abdominal symptoms in the young subject the presence or imminence of Crohn's disease should be suspected. It occurred in five of the author's patients before the diagnosis of Crohn's disease was established, the ages varying between twenty-one and twenty-six. The cause of this peri-anal infection is not clear but it is probably to be regarded more as a local complication of persistent diarrhoea than as due to any specific cause.

Fistula formation may follow operations directed to the cure of the disease e.g. short circuit or resection or it may precede such activities. In either event it almost always develops through the scar of a previous operation or drainage wound. Rarely it may be peri-anal (Crohn 1949). In only one case in the author's series did a fistula develop spontaneously through the virgin abdominal wall. The presence of a fistula is to be regarded as an indication for operation for spontaneous healing is rare. Operation limited to excision of the fistulous track down to the bowel is, however, likely to be ineffective merely adding yet one more operation to the patient's score.

Internal fistula into neighbouring bowel, particularly the ileum or the sigmoid colon are of frequent occurrence. Rarely an ileovesical fistula may form, giving rise to cystitis with pneumaturia.

A Familial Factor?

Many examples of the disease occurring in members of the same family suggest the possibility of genetic or environmental predisposition. The author's series of forty-seven patients include two brothers ages at operation being twenty-two and twenty-seven, and identical female twins ages at operation being twenty-seven and thirty. In the latter operation findings were identical, except that one had a fistula. Both were treated by resection and both regained full health, being well thirteen years and ten years respectively since operation.
Kinship with Ulcerative Colitis and Tuberculosis

There is undoubtedly a kinship between ulcerative colitis and Crohn's disease although their clinical pictures differ so strikingly.

One essential pathological distinction is the tendency to fistula formation in Crohn's disease and which is not shared by ulcerative colitis.

The kinship between the two is none the less a very real one for what starts as a characteristic example of Crohn's disease of the ileum may spread to produce changes in the large bowel equally characteristic of chronic ulcerative colitis.

Conversely, para colic lymphatic glands in ulcerative colitis cases may contain non accentuating giant cell systems typical of those found in mesenteric lymphadenitis associated with Crohn's disease.

Tuberculous enteritis may cause changes in the terminal ileum identical at first sight with those of Crohn's disease, and can be distinguished from the latter only by the presence of tubercles on the peritoneal coat and by guinea pig inoculation.

Treatment

The results of surgery in the treatment of Crohn's disease are disappointing—even dismaying. Whatever operative method be adopted the frank recurrence rate within a few years is within the region of 50 per cent and only a proportion of the remainder regain a normal bowel habit. This estimate is based upon the author's own experience and upon reports both published and unpublished emanating from various centres in the United Kingdom and the United States of America.

The two accepted forms of surgical treatment are ileo-hemicolectomy and exclusion ileo colostomy. Most surgeons, with the notable exception of the Mount Sinai Hospital group in New York, have a preference for excision. In the author's experience the success of operative treatment is related directly to the age of the patient and to the chronicity of the disease. The older the patient the more satisfactory the result. This applies in particular to excision which is best accomplished in one stage, with end to end or end to side ileo transverse colostomy. If this operation is practised in the very young subject in whom the history of illness is short though the main symptoms may be eliminated, diarrhoea is very likely to persist and full health is rarely regained. Frank recurrence is common. The same applies to exclusion ileo colostomy though on occasion especially when employed when multiple fistulae are present and the patient is in a very ill condition the immediate benefit to health of this procedure may be dramatic.
Simple side to side anastomosis may yield an occasional success, but usually, at best, causes only temporary abatement. The author has reason to believe that it may sometimes accelerate, or at least favour, spread of the disease to the large bowel. He shares the opinion that the essential of any operative treatment must be transection of the ileum well above the disease so that direct spread upwards from the affected portion is foiled.

The two stage operation has little to recommend it as a planned procedure though it may be an operation of necessity in those patients who do not improve after exclusion ileo colostomy.

Vagotomy appears to have the effect of diminishing the degree of diarrhea thereby causing a general improvement in health sufficient to make further surgery justifiable at a subsequent date. X ray treatment has been explored (Legers 1933, Kiefer and others 1950) but there is little evidence of its efficacy though it may be worthy of trial in those patients who have recurred after either resection or short circuit or in whom the disease is widespread, and attended with fistula.

In view of these experiences the question must be posed "Is Crohn's disease in its early stages a surgical disease?" In answering this question attention must be paid to two known facts:

(a) Under certain circumstances Crohn's disease may resolve—or at least become inactive—dying away to leave only fibrotic changes in the subserous coats.

(b) Spontaneous fistula—that is fistula through the unoperated abdomen—are excessively rare. The weakness here in clinical work is that diagnosis usually awaits exploration. Under such circumstances the only way of reducing the risk of fistula is to resist any attempt to interfere with the bowel in the young patient. The appendix must be left.

In the light of this knowledge the surgeon would do well to consider the possibilities for the young patient of treatment in the first instance by complete rest in bed and a high protein diet. The period of rest enjoined must be indefinite but should continue until all symptoms pass away or until it is evident that the disease progresses in spite of this régime. The patient and relatives must be impressed with the overriding need of obtaining resolution. The disease as tragic experiences with many patients has shown is as grave a matter as tuberculosis, for which the need for prolonged rest is so readily accepted.
Summary of Treatment

For young subjects complete bed rest on a high protein diet
Surgery is indicated in older people in whom the disease is well
localized, and for those patients who do not respond to medical
treatment.

The operation of choice is also hemicolecctomy, performed in one
stage. Inclusion also colectomy is preferred for the more diffuse
lesions, where the radical operation may carry considerable risk in
the treatment of recurrence, and in the very young, subject in whom
an attempt at surgical relief is impelled by failure of medical treatment.

References

Armitage C and Wilson W 1950 Brit J Surg 38 182
Chess S Chess D Odander C Binns W and Coll W H 13 0
Surgery 27 21
Colt R and Dreiling D A 1952 1 1 Arch Surg, 64 48
Crow B B 1949 Regional Heats Staples London
Dry I D 1951 Surgery 29 11
Ferguson C Discussion of Gordon 1937 Ann Surg 97 132
Garlock J H Crow B B Ruffin S H and Yarnis H H 1931 Castro
Enterology 19 414
Kiefer E D Marshall S F and Brotsma V I 1930 Ibid 14 118
CHAPTER XIV
THE COLON
HAROLD C. EDWARDS
ULCERATIVE COLITIS

Continuous failure of medical treatment greatly reduced risks of operation and improvements in ileostomy appliances have all contributed to an extended use of surgery for the cure of chronic ulcerative colitis. Moreover in the treatment of the typical disease in which the whole colon and rectum are involved there is an increasing tendency to attempt excision of the whole colon or at least the major portion of it as a primary procedure. In some clinics the practice has been extended to include the rectum in the same session. Such a radical approach—and the operative risk of subtotal colectomy is not significantly greater than that of ileostomy alone—has very many advantages over the two or three stage operation of which ileostomy is the first step. The discomfort to the patient is reduced incomparably, the toxic effects of the diseased colon are immediately eliminated, the ileostomy is more readily developed into an adequate excretory organ in the absence of the colon and the surgeon is not embarrased at colectomy by the increase in body weight which may often follow upon a successful preliminary ileostomy.

This conception has developed not only because it has been established that the patient suffers no appreciably greater risk from the primary radical operation than he would from ileostomy alone but also from the abandonment of the last lingering hopes entertained for so long that ileostomy alone might result in sufficient restoration to health of the colon to enable its eventual closure with restoration of continuity. The number of cases in which this desirable sequence has been followed is indeed too small to influence the main contention.

Ætiology and Medical Treatment

Meyer and others (1949) have shown that the mucolytic enzyme lysosome is present in increased amount in the stools in ulcerative colitis and diminishes with clinical improvement and...
excess of lysosome or a similar enzyme may be an aetiologic factor. Simmons (1959) however thinks that lysosome in the
feaces is derived from pus cells and that it is not of aetiological
significance. Further researches are being undertaken. In treat-
ment hog duodenum (Streicher and Others 1949) and crude extract
of intestinal mucosa (Friedman and Haskell 1948) have been used
to some advantage in early cases and there is evidence that the
physician is paying more attention than hitherto to the undoubted
psychological factors which attend the onset of the disease, and its
exacerbations once it is established. Of more immediate interest
to the surgeon is the use of ACTH and cortisone. Trial of these
two hormones either alone or in sequence has led in a proportion
of cases to improvement in appetite and well being, to a fall in
temperature, and to a lessening of pain and diarrhoea. Their use
however is attended by danger of complications specifically due to
them such as perforation of a haemorrhage from an unsuspected
peptic ulcer and silent perforation of the colon itself. The
chief use of these substances appears to be in the treatment of
the fulminating case for it is a safer alternative despite the risk
of complications to an emergency ileostomy, which is so frequently
fatal. Lahey (1951) recorded remission of the acute phase in 21 of
28 cases treated with ACTH.

Vagotomy

It is with some hesitation that one mentions mention in "Recent
Advances of vagotomy as a treatment for chronic ulcerative
colitis. None the less there is considerable evidence that division
of both vagus nerves may cause a significant improvement of
symptoms if performed early in the history of the disease, before
extensive fibrosis has developed in the colon. This replacement is,
according to Eddy (1951) particularly striking after vagotomy
performed for the fulminating form of the disease. The benefit
alleged to be conferred by this operation is however difficult to
comprehend except in those cases in which the ileum is involved
for it is doubtful whether any branches of the vagus reach as far as
the colon. Further proof of the value of the operation will be
needed before it can be accepted as a worthwhile procedure.

Predisposition to Cancer

It has finally been established beyond reasonable doubt that
chronic ulcerative colitis predisposes to cancer. Published figures
of the incidence of cancer as a complication vary from 1 to 10 per
cent, but the lower figure is certainly an understatement probably
due to failure to follow up the cases for long enough, for Shands and others (1952) found that the average duration of symptoms of ulcerative colitis in seventy-three cases before cancer supervened was over fifteen years.

A disturbing feature is that cancer secondary to ulcerative colitis usually appears in an intensely malignant form. It grows rapidly and metastasizes early and is frequently multicentric in origin. The average age of the patients is considerably less than that of those who develop cancer without previous bowel disease, and because of the disarming symptoms of chronic colitis its presence may not be suspected until it has become well advanced. The experience of Counsell and Dukes (1932) is in fact, that the patient is usually incurable by the time the presence of cancer is realized. In any event the prognosis is very bad.

These facts are weighty arguments in favour of total removal of the colon and rectum in the surgical management of chronic ulcerative colitis.

Right-sided Colitis

In its usual form ulcerative colitis appears to begin in the rectum or the distal colon and to spread throughout the colon often stopping abruptly at the ileo caecal valve. In a minority of cases however estimated at about 5 to 8 per cent of the total number, the disease affects mainly the right half of the colon, the left half being apparently normal. When found in this situation the disease appears to pay little respect to the ileo caecal valve for the ileum is also frequently involved. Brooke and Cooke (1951) in fact, think that the disease in this form may actually start in the ileum and spread to the colon instead of the reverse process because a history of steatorrhoea in some of their patients antedated any symptoms of disease in the colon itself. These workers rightly stress the importance of careful radiological investigations of the ileum when the brunt of the disease is shown to be in the caecum and ascending colon before operation is decided upon. Thus consideration of course also applies to chronic ulcerative colitis in which the whole colon is involved for although the disease seems usually to stop at the ileo caecal valve, it sometimes spreads into the ileum—and not merely as a terminal event for Macready and others (1949) obtained microscopic evidence of involvement of the ileum in nine of 103 patients with a short history of colitis.

Brooke and Cooke suggest that right-sided colitis should be regarded as a separate disease demanding separate consideration of treatment and feel that ileostomy is definitely contra indicated.
Ulcerative colitis alone, however, should never be considered in the treatment of a disease which is limited, as far as the colon is concerned, to its right side for the condition is amenable to surgical excision with restoration of continuity by an end to end anastomosis between the ileum and the residual healthy distal colon. The note of caution expressed by Brooke and Cooke is, however, a timely one and if there is clinical evidence of stenosis or radiological evidence that the ileum is involved, then it is probable that surgical treatment is contra indicated altogether.

Indications for Surgical Treatment and its Scope

Surgery finds its best application in the treatment of chronic intermittent ulcerative colitis and should be undertaken during a period of relative quiescence. None will dispute that the following complications of ulcerative colitis are either absolute or very strong indications for surgery: stricture, perforation, cancer, recurrent severe haemorrhages, recurrent perirectal abscess, pyoderma arthritis. It is however impossible to lay down any exact rule for the employment of surgery for the uncomplicated case for the effects of the disease vary so greatly in different patients, and for each the decision to operate must rest upon its own merits. Three guiding principles may nevertheless be stated: (1) the colon should have become damaged beyond the likelihood of recovery in spite of every medical care; (2) surgery should not be delayed over long once this is established for the results of surgery are best when undertaken for those with a comparatively short history of the disease; (3) as stressed by Hardy and others (1943) and by McWhirter and Moore (1949) the patient should be led to surgery by personal knowledge of its benefits which he can acquire only by contact with those who have been submitted to it and are leading the ileostomy life.

The object of surgery is to remove the whole of the diseased colon and rectum, and the operative plan should be devised to this end, and the patient fully informed. This entails a permanent ileostomy. Attempts have been made to overcome the disadvantage of an ileostomy by anastomosing the ileum to the anus, but the frequency of stool, the inconvenience of wearing protective pads on the perineum and the liability to excoration of the perineum outweigh any apparent advantages of the method. Partial colectomy followed by ileo-sigmoidostomy or ileo-rectostomy is suitable only when the rectum is unaffected by the disease.

In the past a permanent ileostomy and colectomy has entailed a multi-staged operation (1) preliminary ileostomy, (2) right
hemicolectomy (3) left hemicolectomy and finally (4) rectosigmoidectomy. There were two reasons for this plan. The first was to improve the patient's condition by ileostomy so that he would be able better to withstand operation on the diseased colon. One great disadvantage of this procedure is that the patient often gets so inordinately fat after ileostomy that subsequent colectomy is made much more difficult. The second was to repertonealize raw areas. Though so desirable in theory, experience especially that of Dunlop (1949) and of Coates (1949) has shown that repertonealization is unnecessary and that the time spent on this tedious manoeuvre is better spent on extending the limits of the colon resection.

Although ileostomy, total colectomy and excision of the rectum have been successfully accomplished in one session this procedure for most cases is carrying the principle of avoiding multiple operations too far and the more expedient method of approach is to perform the operation in two stages, the first being ileostomy and total or subtotal colectomy and the second after an interval of some months excision of the rectum or recto sigmoid. It must be admitted however that for some of the more advanced cases discretion must be exercised and the first operation limited to ileostomy.

Colectomy—Total and Subtotal

The ideal procedure is to remove the whole colon and to close the cut end of the rectum covering the stump of the latter with peritoneum at the level of the peritoneal reflection after division of the superior haemorrhoidal vessels. This manoeuvre makes it more easily possible to excise the rectum subsequently through the perineum instead of performing an abdomino perineal section as Brooke (1952) has pointed out.

This step however considerably increases the length of time of operation for many patients are ill conditioned to sustain easily the additional strain that it imposes. A speedier and entirely safe alternative is to divide the colon somewhere in the recto sigmoid region and to bring the divided distal end through a small stab incision in the left iliac fossa. A tube may be placed in the open end of the protruding portion if thought desirable but this is not essential and it is quite safe to sew over the open end of the bowel and leave it anchored in position by tying the sutures over a length of rubber tubing lying on the surface of the abdomen.

The Technique and Complications of Ileostomy

The success of surgical treatment stands or falls upon the efficiency of the ileostomy. If the ileostomy behaves well, it is surprising how
little it handicaps the intelligent patient who has mastered the use of the Koeing Rutzen type of bag (Fig. 52). If the ileostomy functions poorly, however, it may well prove an intolerable burden. Complications such as recurrent obstruction, stenosis, prolapse, fistula formation, persistent excoriation of the surrounding skin, and progressive fistula distension may each or all conspire to rob the operation of all virtue and to deny the patient the reward of his submission to surgery.

It thus behoves the surgeon to study deeply the technique of ileostomy and to use all his arts to ensure, so far as he is able, a successful outcome.

The ileostomy should lie at or about the junction of the middle and inner thirds of the right anterior spino umbilical line. Under no circumstances should the opening be placed in the line of a main incision for if weight is gained after operation which is to be expected the ileostomy will come to lie in a deep valley. Moreover, the scar tissue above and below may contract and interfere with the mobility and caliber of the intestine. It is best to excise a disc of skin and subcutaneous tissue the size of a florin and bring the ileum through this opening, making no attempt to repair this discoid incision. If colectomy is to be performed at the same time, it is wise to excise this area of skin as the first step of the operation for it is much easier to choose the proper site for the ileostomy before the abdomen is opened. The anterior and posterior rectus sheaths are incised for some $1\frac{1}{2}$ in. and are not repaired nor anchored to the ileal mesentery and the rectus muscle is split in the direction of its fibers over the same extent. After the proximal end of the ileum has been brought through this incision, and grasped in a
suitable clamp the cut mesentery is sutured by interrupted stitches to the under surface of the peritoneum along an oblique line so that the ileum is not rotated, taking great care not to injure the mesenteric blood vessels. About 2 in of ileum is allowed to project. A large rubber catheter is prepared for use by tying a layer of 6 in wide sterile gauze around it some 4 in from its proximal end and by four or five silk ligatures placed an inch or so apart. The clamp is removed and the catheter pushed well into the ileum the open mouth of which is now tied around the gauze clothed area of the catheter. Saline solution is run into the tube to ensure that it is patent. It may be possible to retain the catheter in situ for seven to eight days until the main abdominal incision is well healed. After this time it is best to anticipate spontaneous discharge of the tube by removing it and using an ileostomy bag which has been previously selected. The projecting ileum should be wrapped in gauze soaked in paraffin and a suitable dressing built up over the area.

Though aluminium paste is widely recommended as a protective dressing for the skin around the ileostomy of recent years the author has discarded its use as an immediate post operation application for fear that it may irritate the tender thin walled ileum and thereby predispose to fistula formation.

Two methods of obtaining an immediate covering for the exposed length of ileum are in vogue. In one a split skin graft is applied and in the other the ileum is clothed by fashioning a rectangular flap of skin from the abdominal wall (spout ileostomy). The resulting bare area being skin grafted. Though either of these methods may, if entirely successful, be an improvement upon an ordinary ileostomy they have serious limitations. The split skin graft is liable to lead to contraction with shortening of the ileum and an added risk of stenosis and the skin flap may fail lamentably if there is any sloughing of the edges of the flap abetted by soiling of the healing scar by ileal contents. Monroe and Olwin (1949) overcome this danger of soiling by introducing by mouth a Harris tube which passes into the ileum and not opening the ileostomy for seven days. The retention of an indwelling tube for so long a period is itself not without danger however and cannot be recommended as a routine procedure. Finally Brooke (1952) has recently explored the possibilities of eversion of the ileum with primary suture of the exerted edge to the skin. No tube is inserted.

CANCER OF THE LEFT COLON

Technical ease has matched perfectly the requirements for extirpation of cancer of the cæcum and right colon e extent
Fig 53 (a) Diagram representing the commonest arrangement of the inferior mesenteric artery and its branches in 70 necropsy room bodies. Special care has been taken to relate the arterial tree and bowel accurately to the bony pelvis and lumbar spine.

Fig 53 (b) Diagram showing method of preparation of sigmoid stump in which the first artery (S₁) is sacrificed and reliance is placed on the descending branch of the left colic artery (I C). This is the method preferred where possible.
of the operation for cancer of the left colon has hitherto been restricted to the removal of a small segment of the bowel with a wedge of its attendant mesentery for fear of interfering with the blood supply of the lower end. The names of Hartmann and Sudek will long be remembered in this context.

Recent observations on the vascular supply of the left colon have enabled us to revise our traditional beliefs. Goligher (1949) has shown that it is possible in practically every case to preserve a sufficiently long stump of sigmoid colon with an adequate blood supply if a ligature is placed on the inferior mesenteric artery immediately distal to the first sigmoid branch (Figs 53 (a) and (b)).

![Diagram of the colon](image)

Fig 54 Segments of bowel to be removed for carcinoma of sigmoid colon A-B lower, sigmoid A-D and rectum E-F with ligation of the inferior mesenteric artery at its origin above the left colic artery. The levels of resection at E and A may range between distal transverse and sigmoid colon depending on the degree of mobilization of the transverse colon and splenic flexure, the site of the tumour and the blood supply of the bowel.

(By courtesy of Drs R. S. Grinnell and H. H. Huatt and the Fd for Surgery, Gynaecology, and Obstetrics)

Provided its marginal artery is not interfered with this portion of colon is nourished adequately by the first sigmoid artery alone or in combination with the intersigmoid marginal artery or by the descending branch of the left colic artery sufficiently to enable an end to end anastomosis to be made with the rectum.

Grinnell and Huatt (1952) and Toupet (1951) find that the splenic flexure can be nourished by the middle colic artery, even if the inferior mesenteric artery is tied at its origin sufficiently for an end to end anastomosis to be made between the descending colon and the rectum. Furthermore, it has been shown that the blood supply of the rectum from sources other than the superior hemorrhoidal artery is more liberal than had been supposed.
to ensure survival of at least that portion of the rectum situated below the sacral promontory. Thus a more radical operation which more closely fulfills the requirements for extirpation of cancer of the left colon may be envisaged, in which the inferior mesenteric artery is defined at its origin from the aorta and removed with its associated lymphatic glands. The value of this extended operation has been well demonstrated by Grinnell and Hatt (Fig. 54). They carried out 41 resections for carcinoma with ligation of the inferior mesenteric artery. Sixteen were for cancer of the rectum or rectosigmoid for which an abdomino perineal operation was performed. In 18 tumours of the left colon were removed and continuity restored by direct anastomosis and there were seven abdominoanal pull-through operations. In 37 specimens dissected after operation there were 7 instances of high lymphatic metastases which could not have been removed if high arterial ligation had not been done. There were three postoperative deaths, only one of these being due to bowel necrosis and following one of the pull-through operations.

The advantage gained by this very radical operation particularly when applied to the treatment of rectal growths must be balanced against the increased risk of so extensive a procedure. Until further knowledge and experience is gained it should not be adopted as a routine. The great value of the work that has been done up to date lies in the knowledge that if at operation for cancer of the left colon in particular the surgeon finds reason to suspect the presence of infected glands high in the mesentery, he is at liberty to attempt their removal ligating the inferior mesenteric artery either near its origin or after the first sigmoid or second sigmoid arteries have been given off according to the needs of the individual case. The growth-bearing area of the colon will then need to be removed to include the rectosigmoid junction if continuity is to be reestablished. In order to bring down the proximal end of the left colon the splenic flexure will need to be fully mobilized. This can best be accomplished first by mobilizing the descending colon and then by detaching the distal half or more of the transverse from the great omentum. Traction on the two mobilized limbs of the splenic flexure will now facilitate its detachment from the abdominal wall.

OBSTRUCTION DUE TO CANCER

The treatment of complete obstruction due to carcinoma of the colon should be restricted to relief of the obstruction and only where the obstruction is incomplete should any thought be given to immediate resection of the growth.
For obstruction of the left and transverse colon the operation of blind cæcostomy has lost favour, largely because the profound relaxation which can now be obtained by curare without detriment to the patient has lessened the risk of laparotomy. Laparotomy too has the great advantage of enabling the surgeon to determine the exact site and nature of the obstruction, and to assess its operability. "Blind" cæcostomy should therefore be used only for patients in extremis in whom there is great cæcal distension.

Opinions vary as to the value of the Miller Abbot tube in the preparation of a patient with colon obstruction due to cancer for operation. As Smith (1948) points out the tube is of little value if the ileo cæcal valve is functioning and a closed colon obstruction is present. Furthermore if the stage of vomiting is reached the prospects of a successful passage of the tube is too remote to justify the discomfort to the patient and the delay in operation which an attempt at its passage would mean. Its use would appear therefore to be restricted to the early case and for the more advanced gastric suction via a Ryle's tube coupled with the administration of intravenous fluids should be employed and operation not delayed for more than a few hours.

If the cancer is in the left colon and the portents are in favour of the possibilities of future radical removal a simple "glass rod" cæcostomy of the transverse colon should be performed. The site of election for this is near the hepatic flexure for this will leave the left side of the abdomen free for the radical operation to come. The Paul Mikulicz operation is far less in favour than was formerly the case but still may have a place in the treatment of the condition in the aged subject.

For obstructive cancer at the cæcum or in the ascending colon the operation of choice is ileo transverse cæcostomy the anastomoses being situated well clear of the proposed area of future operation.
the growth appears to be resectable. In those patients in whom obstruction is only partial and who are adjudged capable of withstanding the operation immediate excision may be contemplated with an ileostomy through the unsutured end of the transverse colon as suggested by Muir (1917) (Fig. 55). After excision of the growth, the distal end of the transverse colon is retained in a clamp, and a side to side also colostomy performed after closure of the ileal orifice. The clamp on the colon is then opened, and the opening closed except for 1 cm at the corner farthest from the anastomosis. A soft rubber tube the size of a 12 or 13 catheter, some 16 inches in length with lateral holes in it, is now inserted through the gap in the colon. It is passed through the anastomosis into the ileum. The tube is stitched to the colon and the bowel inverted around it with a number of circular sutures. The free end of the tube is brought through a stab wound about 2 inches below the right costal margin and outside the rectus sheath, the colon around it being sutured to the peritoneal edge of the stab wound.

HIRSCHSPRUNG'S DISEASE

A new approach to the problem of Hirschsprung's disease has resulted from the work of Swenson and Bill (1918) and Bodian, Stephens and Ward (1919).

These workers have defined a type of Hirschsprung's disease in which the development of a megacolon appears to be due to a congenital absence or aplasia of the nervous tissue (Auerbach's plexus) concerned in the neuro muscular control at the recto sigmoid junction thus distinguishing this type of megacolon from the acquired or functional megacolon which develops during infancy and is not present at birth.

To this type the term aganglionic megacolon may be applied, and it can be distinguished from the acquired type by the onset of symptoms from birth and by radiological studies which demonstrate the presence of a narrowing of the bowel at the level of the recto sigmoid junction with dilatation of bowel above, but with the rectum unaffected (Figs 56 and 57). Cases of megacolon where no such abrupt transition can be demonstrated should not be included in this category, and are unsuitable for surgical treatment. Bodian (1949) and others found that 39 of 73 cases of idiopathic megacolon conformed to the aganglionic type. A narrow distal segment was demonstrated in 34 of these by radiology and in 5 at autopsy. Microscopic examination showed a complete absence or diminution in number of autonomic ganglion cells of Auerbach's
plexus in the wall of the rectum and in the bowel for a variable distance above the narrowing. It must be added here that despite the attractiveness of this simple explanation for the cause of megacolon, doubt has been thrown upon its validity notably by State (1952) who points out that ganglion cells are not always absent from the rectum below the narrowing and are not always present above the dilated colon.

The treatment for the condition is rectosigmoidectomy preferably performed in one stage. If there is gross distension however which cannot be relieved by a tube passed through the narrowing and colon ligation a preliminary colostomy is performed. Swenson (1951) recommends a pull through operation after resection of the recto sigmoid from a point 12 cm above the narrowing. Dissection is made close to the rectum so that impotence and impaired bladder function can be avoided. Bodian (1949) and his colleagues however prefer to do the operation in stages. In stage one the colon is defunctioned by a right sided spur colostomy. Thorough preparation of the distal segment is then made possible. An interval of several months is preferred before the next stage is attempted so that the child may improve in health and the
glandular enlargement in the meso-sigmoid may be given time to subside. Stage two is an abdominal hemiprecto-sigmoidectomy. The site of election for the proximal resection of the bowel is about half way along the cone-shaped funnel situated above the narrowing. The rectum is dissected distally as far as the levator ani muscle and the narrow segment of bowel is then intussuscepted out of the pelvis through the anus. The prolapsed portion is excised leaving about 14 inches of anal canal to which the cone-shaped proximal colon is anastomosed. The third stage consists of crushing of the colostomy spur with later (stage four) closure of the colostomy.

State (1952) prefers to perform an extensive left hemicolectomy from the proximal limit of the dilatation which is usually near the hepatic flexure and of the transverse colon followed by intra-abdominal anastomosis of the residual transverse colon to the rectal stump 6-10 cm above the anus.

Results

Swenson (1951) claims a cure in 28 of 31 cases. Bodian and others (1951) 32 satisfactory results of 37 patients operated upon and State (1952) much improvement in all but one of 15 cases.

References

Ulcerative Colitis

Brooke B N 1952 Lancet ii 102
Brooke B N and Cooke W T 1951 Ibid ii 402
Coates A F 1949 Med J Aust 1 397
Counsell P B and Dukes C E 1942 Brit J Surg 39 483
Dunlop E E 1949 Med J Aust 1 399
Eddy F D 1951 Surgery 29 11
Friedman H F and Haskell B F 1948 Gastroenterology 11 833
Hardy T L Brooke B N and Hawkins C L 1949 Lancet ii 5
Larhey F H 1951 Ann Surg 133 726
McKitterick L S and Moore F D 1949 J Amer med Ass 139 201
Meyer K Gellhorn A Prudden J Lehman W L and Steinberg A 1949 Rev Gastroenterol 16 476
Monroe C W and Olwin J H 1949 Arch Surg 59 501
Sammons H C 1950-51 Gastroenterologia 76 347
Steicher M H Grossman M I and Ivy A C 1949 Gastroenterology 12 371

Cancer of the Colon

Goligher J C 1949 Brit J Surg 37 157
Grinnell R S and Hiatt R B 1952 Surg Gynec Obstet 94 526
plexus in the wall of the rectum and in the bowel for a variable distance above the narrowing. It must be added here that despite the attractiveness of this simple explanation for the cause of megacolon doubt has been thrown upon its validity notably by Strue (1952) who points out that ganglion cells are not always absent from the rectum below the narrowing and are not always present above the dilated colon.

The treatment for the condition is rectosigmoidectomy preferably performed in one stage. If there is gross distension, however, which cannot be relieved by a tube passed through the narrowing and colon lavage, a preliminary colostomy is performed. Swenson (1951) recommends a pullthrough operation after resection of the rectosigmoid from a point 12 cm above the narrowing. Dissection is made close to the rectum so that impotence and impaired bladder function can be avoided. Bodian (1949) and his colleagues however prefer to do the operation in stages. In stage one the colon is defunctioned by a right-sided spur colostomy. Thorough preparation of the distal segment is then made possible. An interval of several months is preferred before the next stage is attempted so that the child may improve in health and that any oedema or

![Fig 56 P A view of barium enema to show the distal narrow segment and the dilatation proximal to it.](image)

![Fig 57 Oblique view to show the distal narrow segment and the proximal funnel-shaped dilatation characteristic of Hirschspring's disease.](image)
Chapter VI
The Rectum and Anus
I. G. Muir

Congenital Deformities of the Rectum and Anus
Imperforate Anus

Anorectal anomalies are uncommon and are said to be present in 1 in 5,000 births. For this reason it is unusual for any one surgeon to acquire great experience in this condition, yet it is an emergency calling for rapid recognition and treatment. In the past, operative treatment has carried a heavy mortality, and it might be expected that the recent advances in the antibiotics, resuscitation and anaesthesia would lead to improvement. Recent accounts confirm this and show a more radical approach to the treatment of this deformity in the newborn.

The condition is almost equal in the sexes and other congenital anomalies are frequently present (72 per cent: Moore and Lawrence, 1952) and may themselves account for the infant's death. It is usual to classify these cases in four groups (Ladd and Gross, 1931). In the first there is patency but an anorectal stricture. In the second the rectum is separated only from the anus by the intact proctodesal membrane. In the third the rectum ends blindly, or by a fistulous track a varying distance above the perineum and in the fourth a normal anus and lower rectum are separated by a varying distance from the proximal part of the bowel.

I. An anorectal stricture only accounts for 5 to 10 per cent of these cases and may occasionally pass unrecognized for some months if the external appearance of the anus is normal. Browne (1951) draws attention to the "microscopic' anus, where only a speck of meconium may indicate the orifice, and to the occasional occurrence of a thick band of tissue (the perineal raphe) passing across the anal site with a minute orifice on one side.

II. The rectum is separated from the anus by an intact thin bulging proctodesal membrane. This also is unusual (5 to 10 per cent).

Neither of these conditions present great difficulties in their initial treatment. A stricture requires dilatation and occasionally incision; an intact membrane must be excised. It is essential that regular
Hirschsprung's Disease

Bodian V, Steigman I D and Ward, B C H 1949 Lancet 1 6
Bodian V, Carter C O and Ward B C H 1951 Lancet 1 301
Fol C M and Blau K C 1951 Surgery 30 1020
State D 1952 J Amer med Ass 149 350
Swenson O 1951 Pediatrics 8 412
Swenson O and Bill A H Jr 1948 Surgery 24 212
daily dilatation should be continued until the anal canal is not only normal in size but shows no tendency to contract. The mortality is low and the results of treatment are usually good.

Between the second and third types of imperforate anus there are many gradations for if the lower end of the rectum fails to reach the proctodeal pit it may open by a tract of varying size in a descending arc from the bladder, prostatic urethra, upper vagina, lower vagina, bulbar urethra or end as a perineal sinus or an other

![Diagram](Image)

wise normal anal orifice in a forward ectopic position (Igs 58–64) A fistula is present in 70 to 80 per cent of this type

Ectopic Perineal Anus

In the female the anal orifice may open beside the vaginal orifice without intervening skin the ‘shotgun’ perineum described by Browne (1951) in the male it may be found just posterior to the scrotum. If the orifice is functioning normally it should be left where it is at least until a later date. If stenosed it may be treated by dilatation or simple backward incision and dilatation. The same treatment is recommended where the anal orifice opens just within the lower vagina, or the more elaborate procedure of transplanting the anal orifice to its correct site. Whatever treatment is to be adopted it is essential that any stenosis should be corrected rapidly.

III This type of malformation accounts for nearly 80 per cent of recorded cases. The anus is imperforate the site being marked by a dimple, converging skin folds, some pigmentation or without trace. The rectum ends a varying distance above the perineum and in 70 to 80 per cent in a fistula with the bladder, prostatic urethra, vagina or perineum. Involvement of the bladder is rare; the prostatic urethra and vagina common.

Fistulae in the perineum or the posterior vaginal wall will be visible through the passage of meconium and ur. In the male the presence
Figs 58-60 Diagrams illustrating varieties of congenital recto-urinary fistula in the male. Figure 59 represents the most common type of recto-urinary fistula.

Fig 61 Ectopic anterior anus in the male. Instead of a normal anus in a forward position the rectum may terminate in a sinus opening in the same site.

Figs 62 and 63 High and low congenital recto-vaginal fistula in the female.
In the female infant with a rectovaginal fistula, Santulli (1952) advises the removal of the anal orifice from the posterior vaginal wall and its implantation into the anal region by a perineal dissection. Out of 25 cases he obtained excellent functional results in 8 and good results in 5. If the fistula is of sufficient size or can be dilated to sufficient size there is no urgency but some form of operative treatment will be immediately necessary if it is not. For low rectovaginal fistulae Browne (1951) advises posterior incision and dilatation.

4. In the female infant without a vaginal fistula the treatment will be a perineal approach if the rectum is believed to be low, or transverse colostomy or abdomino perineal repair if it is high.

IV. In this rare condition the anus and lower rectum are developed but there is a failure of fusion with the rest of the bowel. The condition tends to be recognized late, and Moore and Lawrence (1952) report a 100 per cent mortality.

BENIGN EPITHELIAL TUMOURS AND MALIGNANT RECTAL POLYPS

These two conditions are closely related for it is recognized that any epithelial tumour of the large bowel is a potential site for carcinoma. Congenital familial polyposis is here excluded and the tumours under consideration may be small and slender stalked, sessile or villous. They have this in common either they are clinically innocent, or, if malignancy is suspected, the tumour is of such small size that local removal is considered.

Rectal polyps particularly the adenomata, are undoubtedly common. De Muth, Cherney, and Kitts (1952) report an 8 per cent incidence in a group of fifty routine sigmoidoscopies performed on patients over forty eight years of age. Both polyps and carcinoma of the large bowel are most common in the rectum and the presence of scattered small adenomata around a rectal growth is a common place.
of meconium in the urine is naturally evidence of a recto urinary fistula. It is of great importance to determine the distance of the rectum from the perineum. Bulging on crying suggests a low rectal pouch, and an X-ray taken after the baby has been held inverted for some minutes may show air in the rectum and its proximity to a marker in the anal region. Unless a fistulous tract is present, and of sufficient size, signs of intestinal obstruction will soon be evident.

1 In male infants without urinary fistulae and where the rectum is believed to be only a short distance from the skin, perineal exploration should be performed by an incision backwards from the anal region to the coccyx. The rectum is identified, mobilized, opened, and sutured carefully to the skin with fine silk sutures to construct a new anus. Santulli (1952) advises the use of a urethral catheter during the operation to aid dissection and the suture of the divided external sphincter muscle behind the anus. If the rectum is superficial and has been easily found, the chance of a good functional result is high, and especially when a narrow superficial sinus passes forward from the anal region to open at the base of the scrotum. Browne (1951) explains this type as the abnormal fusion of the external genital folds covering a normally developed anus which only requires exposure. Unfortunately this type is not common.

While there is a good chance of success if the rectum is found to be superficial, it is an unfortunate error if it proves to be deep. A colostomy, which should be performed in the transverse colon, is urgently required and the scarring in the perineum may hinder later attempts at reconstruction. For this reason deep dissection in the perineum is unjustified at this stage.

2 In male infants with a urinary fistula or with a high rectal pouch, a transverse colostomy a later suprapubic cystostomy and in later years subsequent attempts at reconstruction through the perineum have been the usual procedure. Recently a number of surgeons have advocated either an immediate, or if colostomy has already been employed at least an early abdomino perineal operation. Through an abdominal incision the sigmoid colon and rectum are mobilized from the sacrum without damaging the blood supply, separated from the vesicles and prostate and the fistulous opening identified, divided, and oversewn. A small incision is then made in the anal region and a clamp introduced into the abdomen through the correct site in the levatores ani muscles. The lower end of the rectum is grasped, pulled through into the perineum and sutured to the skin. A urethral catheter facilitates it.
RADICAL RESTORATIVE RESECTION IN THE TREATMENT OF RECTAL AND RECTO-SIGMOID CANCER

Many surgeons now feel that this operation has an important part to play in the treatment of rectal and recto-sigmoid cancer to some its use is never justified. It is a temptation to surgeon and patient alike to accept a course which will avoid a permanent colostomy and before embarking on an operation of this nature the surgeon must weigh carefully its advantages and disadvantages.

While there are a number of different methods by which this operation may be performed that in common use is an anterior resection. In this a varying amount of the rectum and sigmoid colon are resected through the abdomen the anastomosis between the proximal sigmoid and the rectal stump being performed in the depth of the pelvis. The following are the essentials for an effective radical restorative resection (Morgan and Lloyd Davies 1950 Muir 1948 1952)

1 The inferior mesenteric artery must be ligated at a point not lower than would be used for a combined excision. As a rule this lies immediately below the first sigmoid artery or if there is a common origin to this vessel and the left colic immediately below the latter. Recently it has been suggested that the inferior mesenteric artery should be ligated at its aortic origin in order to remove still more of its associated lymphatic chain (Ault, Gastro and Smith 1952 Grinnell and Hatt 1952). These writers hold that the marginal arteries are quite sufficient to nourish that part of the sigmoid to be used in the subsequent anastomosis.

2 After mobilization it must be possible to divide the bowel at least 21 in below the lowest limit of the growth. The work of Dukes (1944) and others has shown that it is very uncommon for a growth to spread more than 5 cm downwards in the superior hemorrhoidal and pararectal lymphatics and that such spread is usually confined to advanced or highly malignant growths.

3 A sufficient rectal stump must be left to ensure proper continence. While some form of continence is sometimes obtained after the removal of almost all the rectal mucosa, it is generally accepted that a rectal stump of some 5 to 6 cm from the anal margin is desirable (Gaston 1952 Goligher, 1951). This stump should be free from adenomatous or suitable treatment should have been given.

4 Growths below the peritoneal reflection of the rectum drain not only upwards but also laterally to the lymph glands on the side wall of the pelvis. That part of the bowel is not enclosed in a
Polyps should always be removed and in such fashion as will permit a careful pathological examination, this is usually performed by the diathermy snare. The variations in instruments current and procedure have been recently summarized by Frankfield (1952) the early stages of malignancy by Fisher and Turnbull (1952) and Loelhart Mummery and Dukes (1952).

The progressive changes in malignancy have been described as "carcinoma in situ" focal carcinoma and "invasive carcinoma." The first can be classified as a suspicious lesion the second as a definite carcinoma but confined to the mucosa and the third shows invasion of the submucosa to a varying degree. From a series of 47 cases classified in this manner and graded in malignancy as high low or average Loelhart Mummery and Dukes have drawn certain conclusions.

As far as is practical the whole of a rectal polyp should be removed for pathological examination for this not only permits classification and grading but enables the pathologist to assess the completeness of removal. Assuming the removal to have been complete with a free margin, local removal alone can be judged sufficient if the carcinoma is "in situ" or only focal. If it is invasive the decision should be influenced by the grading. For a tumour of low malignancy local removal would seem to be sufficient for high malignancy radical surgery is necessary and for average malignancy the choice of radical surgery or continued and careful supervision. While each case calls for individual consideration evidence suggesting incomplete removal of a malignant polyp generally indicates radical surgery whatever the grading of the growth.

The treatment of the large villous tumour of the rectum presents a most difficult problem. If biopsy shows malignancy the issue is clear but a negative biopsy does not exclude it. Further the actual extent of these soft tumours is often impossible to define with the finger and sometimes with the naked eye. For these reasons and because of the frequency of recurrence after local excision Gabriel (1952) advises a combined excision. While this provides a complete solution to the problem in the absence of proved malignant disease it is not one which every surgeon would accept. Alternatives are an anterior resection, a pull through, or an abdomino anal resection the two latter permitting an even lower excision of rectal mucosa. Unfortunately some villous tumours may extend down to the anal canal and in such cases the surgeon has only a choice of radical excision or an accepted incomplete removal.
The Results of Radical Restorative Resection

The mortality rate of these operations would appear to be less than that of a combined excision. In anterior resection it is under 5 per cent, and that is a satisfactory mortality rate for a major operation which is usually performed on patients in the seventh or eighth decade. Although anterior resection is a more time consuming procedure than a combined excision, there appears to be less operative shock with the absence of a perineal operation and the post operative course is more comfortable.

Survival Rate after Radical Restorative Resection

The largest series reviewed is that of Dixon (1948) who found a five year survival rate of 67.7 per cent for restorative resection compared with 44.8 per cent for combined excision. It should be remembered however that it would be the high rectal growths that would be treated by restorative resection and that they have in any case a better prognosis. The question which must be answered is whether a high rectal growth treated by restorative resection has as good a post operative prognosis as a similar growth treated by combined excision. It is believed that the results are comparable, but they can never be quite so good and for two quite definite reasons.

1 Combined excision leaves no rectal stump. In a restorative resection part of the rectum remains, and this can only be regarded as part of a pre cancerous bowel and a suitable site for a further growth. It is not so uncommon for a patient who has had a combined excision to develop later another primary growth in the colon, or for a carcinoma of the colon to be followed later by a carcinoma of the rectum, or for more than one primary growth to be found in the large bowel at an operation. Apart from congenital familial polyposis, however, no surgeon would suggest that because a patient has had a carcinoma of the colon the whole of the large bowel should be removed, but the rectum is the most common site for large bowel cancer, and there must be a risk in failing to remove it completely when part of it has already been the site of a growth.

2 The risk of recurrence in the anastomotic line. Foci of growth may be left behind in the soft tissues of the pelvis after a combined excision, and this is more common with low rectal growths (Gilchrist and David, 1947). If a restorative resection were performed for a low rectal growth the same fault might occur, and the recurrence might subsequently involve the anastomotic line. A number of cases have, however been recorded where recurrence took place...
peritoneal envelope and has a much more intimate contact with pelvic fat, fascia levatores ani muscles, adjacent organs and their lymphatics. For this reason growths in this region should be treated by widespread excision and are regarded as quite unsuitable for a restorative resection.

The Choice of Case

The number of cases suitable for radical restorative resection in the hands of those surgeons who practise the operation is probably not more than 20–25 per cent of all operable cases of rectal and rectosigmoid cancer. The choice of case will depend on a number of factors; some of which have already been discussed.

1. The growth should be at least 10 cm from the anal verge and 5 cm above the lowest level of peritoneal reflection in the pouch of Douglas. The height of the growth above the cervix or seminal vesicles on rectal examination is of clinical value in estimating suitability, but a final decision can only be made at laparotomy. Rectosigmoid and growths of the distal sigmoid colon are usually suitable.

2. The growth should be early and not of high malignancy. Both an advanced growth and a highly malignant growth are more likely to be effectively removed by a combined excision.

3. In an obese subject with a small pelvis the operation may be difficult to perform. If this is likely to lead to an ineffective clearance of the growth the operation should be abandoned and a combined excision performed.

4. The sigmoid colon mobilized by freeing the descending colon and, if necessary, the splenic flexure, must reach the rectal stump without tension and with a good blood supply.

Restorative Resection as a Palliative Operation

This operation is also suitable for cases of rectal cancer locally operable with hepatic metastases but it should be borne in mind that failure to remove a sufficient margin of bowel below a growth may lead to local recurrence before the patient's death.

Colostomy

When obstruction is present a right transverse colostomy should be a preliminary to an anterior resection. It may also be used at the time of operation if preoperative preparation appears to have been ineffective or there is doubt about the safety of the anastomosis. The use of the sulphonamides and the antibiotics now makes a routine colostomy less common.
RADICAL RESECTION

at the recto sigmoid anastomosis and soft tissue recurrence could almost certainly be excluded (Lloyd Davies 1948 Muir 1948 1952 Long Mayo Docr evy and Judd 1950, Goligher Dukes and Bussey, 1951).

It is thought that the reappearance of cancer at the anastomotic line may be due either to a fresh growth developing stimulated by the process of repair in pre cancerous bowel, or to implantation of cancer cells on the raw tissues at the time of the anastomosis. To lessen the danger of the latter it is advised that during the operation the lower rectum should be washed out once a clamp has been applied below the growth. Cole (1952) considers that the danger of cancer cell implantation on anastomotic lines through small particles of growth set free into the lumen of the bowel during surgical manipulation is probably not uncommon. Certainly if it occurs in the recto sigmoid anastomosis after restorative resection where the anastomotic line can be both felt and seen in post operative surveillance there is no reason to suppose that it does not occur after other operations on the colon.

It is not yet possible to estimate the frequency with which carcinoma reappears after a radical restorative resection. It may be in the region of 10 per cent and it should be remembered that whatever the cause this particular type of recurrence could not occur with a combined excision. When such recurrence is treated by a combined excision the operation is a difficult one and there is an increased risk of ineffective removal.

Radical restorative resection has certain advantages and as an anterior resection should be used much more frequently for growths of the sigmoid colon whose lymph field resection is frequently inadequate. Its use calls for great care in the selection of patients and a knowledge of the risks which must be accepted.

References

Congenital Deformities
Browne D. 1951 Ann Roy Coll Surg 8 173
Gross P E 1952 Surgery 32 365
Ladd W E and Gross R E 1934 Amer J Surg 23 167
Moore T C and Lawrence E A 1952 Surgery 32 302
Santulli T V 1952 Surg GyneC Obstet 95 601

Benign Tumours
Fisher E R and Turnbull R B 1952 Ibid 94 619
Gabriel W B 1952 Ibid 45 696
Lockhart Mummy H E and Dukes C E 1952 Lancet 279 751
in jejunal diverticula, there may be some evidence of compensatory hypertrophy of the muscularis mucosae in the wall of the pouch.

The vessel whose channel through the muscular coat determined the site of herniation can usually be demonstrated. In the small intestine the blood vessels pass through the muscle coat almost immediately they leave the mesentery, hence the diverticula are closely related to the latter; in the colon the blood vessels, after leaving the mesentery, pass under the serous coat to the edge of the longitudinal muscle band before piercing the circular coat to reach the submucosa. Hence diverticula of the colon appear in two rows on either side of the mesentery and at some distance from it. As the blood vessel passes under the longitudinal muscle of the colon a small branch is given off to the corresponding tenia epiploica, thus in obese subjects the pouches are often obscured by fat.

Diverticula of the duodenum and jejunum may become very large—of golf ball size and over—but colonic diverticula rarely exceed the size of a grape.

Clinical Aspect

The underlying cause for clinical symptoms due to diverticula is retention of intestinal contents, to which they are predisposed by their deficient musculature and their bottle neck communication with the parent intestine. The nature of both symptoms and complications will thus depend largely upon the nature of the contents and the anatomy of the area of bowel from which the diverticula arise.

The Duodenum

Hernal diverticula of the duodenum are to be found in about 2 per cent of all radiological examinations of the gastro intestinal tract, and about 80 per cent of these appear at the site of entry of the common bile duct into the duodenum, and are hence called perivaterian. Except when situated at the duodeno jejunal flexure, duodenal diverticula other than perivaterian very rarely give rise to symptoms.

The first part of the duodenum is never the seat of hermal diverticula and pouching in this situation is the result of chronic duodenal ulceration. The affected part of the duodenum is shortened by contraction of scar tissue due to ulceration, and the unaffected unscarred portion of the duodenum balloons outwards. Though evidence of attenuation of the muscular wall may be found at the fundus of such pouches when they are large and of long standing in the early stages their wall is normal. They never give rise to
CHAPTER XVI
DIVERTICULOSIS AND DIVERTICULITIS OF THE INTESTINE

HAROLD C. EDWARDS

Introductory

Diverticula of the small and large intestine are acquired by a process of herniation of the mucosa through the muscle coat of the bowel and are an affection of middle age and later. The mechanism is with herniation through the abdominal parietes is exceedingly complex and little understood. It is generally agreed that two basic factors are concerned—pressure within the cavity of the bowel, which forces the mucosa against the muscularis and an outlet or locus minoris resistance such as that provided by the gap in the muscle coat occasioned by the passage of blood vessels or in the case of the duodenum by the common bile duct. The unknown factor lies in the behaviour of the plain muscle itself upon which layer the integrity of the bowel wall depends. It has been demonstrated that atony or atrophy of the muscle is not a constant or even a common causal factor. Not only does the microscopic anatomy bear evidence against such a supposition but it is well known that passive pressure alone as in acute obstruction, does not produce pouching. It has been suggested that local spasticity of the muscle wall is a more probable antecedent to herniation and there the matter rests. All those contributory factors which arrive coincidentally with middle age and which predispose to external hernia are doubtless concerned and the tendency to diverticulosis increases with age.

Anatomy

The muscle coat of the intestine usually ends abruptly at the orifice through which the mucosa is extruded though it may be everted to accompany the hernia for a short distance. The muscularis mucosae accompanies the mucous membrane so that a few fibres may be present throughout the diverticulum, although in the fully formed diverticulum the fundus usually consists of mucous membrane covered only by the serosa. Occasionally, more especially
stressed always that unless there is unequivocal evidence of delay in the diverticulum the latter should not be regarded as the cause of the symptoms (Fig. 65, a and b).

Perforation of a paraenteric diverticulum is almost unknown but other complications are recorded, e.g. chronic pancreatitis, obstructive jaundice. Seldom however can diverticula be held responsible for either, and any association between the two is likely to be coincidental.

Management It is probably advisable to ignore the presence of a small duodenal diverticulum discovered by barium meal. Knowledge of its existence is of no material value to the patient and there is no known treatment which can influence it in any way. Operation should be considered only when the diverticulum is large and retains barium after the stomach has been empty for several hours.
symptoms *per se*, and their significance lies in furnishing absolute evidence of past or present duodenal ulceration.

Pernierian diverticula are usually single. They nearly always arise in posterior relationship to the common bile duct and pass to the left behind the head of the pancreas, being separated from the latter by a layer of areolar tissue. Many of the patients are visceropathic. The diverticula do not give rise to recognizable symptoms until they have enlarged sufficiently to retain duodenal contents for a significant period. The symptoms are then those of a flatulent dyspepsia, with a sense of oppression in the epigastrium after meals and borborygmi. Pain is not a common symptom. The mimicry of chronic cholecystitis is particularly close and acquired diaphragmatic hernia may also produce similar symptoms. It must be
prevention. The incidence of the complication of diverticulitis cannot easily be assessed, for the border line between it and diverticulosis is often ill defined. Severe diverticulitis is, however, comparatively rare. One unexplained feature is that whereas diverticulosis shows little discrimination between the sexes, diverticulitis is at least two and a half times as common in men as it is in women.

The possible complications are set out in the accompanying scheme (Fig 66). Only those in capitals demand specific attention.

Management of Diverticulosis and Diverticulitis of Mild Degree

The majority of patients with diverticulosis go through life without suffering any untoward symptoms from that source. It is thus probably wisest if diverticulosis is revealed "by accident" and if there are no signs that any inflammation is present, not to make the patient aware of his condition. The most that should be done is to advise from a general standpoint, avoidance of constipation. Regimen in diet which is a life sentence, should be reserved for those in whom there is already some evidence of diverticulitis, e.g. occasional pain or discomfort in the left iliac fossa, increasing irregularity of bowel action, radiological evidence
Diverticula at the Duodeno-jejunal Flexure

Diverticula here tend to increase in size quickly probably because their mouth is at the acute turn of the bowel, and they are thus placed at a great mechanical disadvantage. They tend to burrow to the right underneath the peritoneum, and when of large size may cause intermittent duodenal obstruction. For this reason operation for their removal should usually be undertaken.

The Jejunum

Diverticula are less common in the jejunum than the duodenum, probably because of the part played in the formation of the latter by the common bile duct. The condition is one of progressive diverticulosis with multiple pouches, which spreads down the bowel rarely reaching the ileum. It resembles diverticulosis of the colon in this tendency to progression. In old people many hundreds of pouches may be found.

The symptoms caused are similar to those caused by perivaterian diverticula but may be even more pronounced, especially as far as borborygmi are concerned. In addition however when large—and they may grow to the size of a tangerine—they tend to cause intermittent jejunal obstruction with hypertrophy of the jejunal wall. The diverticula may occasionally become acutely inflamed and may rarely perforate. Spontaneous haemorrhage has also been recorded.

The attitude to the treatment of uncomplicated cases should be at least as conservative as with perivaterian diverticula particularly in view of the tendency to progressive involvement of the bowel. Operation should be entertained only when radiology demonstrates prolonged retention.

At operation the best policy is probably to resect the segment of jejunum which bears the largest pouches i.e. those which are responsible for symptoms.

The Colon

Diverticulosis of the colon is an exceedingly common finding in patients of forty five and older. In its characteristic form it is a progressive disorder chiefly affecting the sigmoid but as age advances spreading to involve the whole colon. In extreme cases, both the vermiform appendix and the rectum may be involved.

Occasionally diverticula are confined to the caecal region (g t.)

Though surgery is chiefly concerned with the treatment of the complications, the surgeon should be concerned also with their
Exteriorization should be held that perforation is imminent but on the whole, he will be best advised to delay interference and treat the patient by rest in bed, a fluid diet, and antibiotics, of which streptomycin is probably the most effective. At this stage aperients and lavage must be avoided.

Perforation and Peritonitis

Perforation may be the first indication of the presence of diverticula in the bowel in the younger age group. A violent seizure of acute pain is followed by evidence of spreading peritonitis, which should lead to immediate laparotomy. The greatest danger is in delay. Perforation is, however, more commonly a complication of the established condition and may be the climax of a severe exacerbation of diverticulitis. At operation a thickened and greatly inflamed colon is then found and though pus with fecal material and foul-smelling gas are discovered on opening the abdomen it may be impossible to find the actual perforation. In some such cases the peritonitis is doubtless due to rupture into the peritoneum of a pericecal abscess and the communication of the latter with the lumen of the bowel may have become sealed off.

Occasionally perforation into the peritoneal cavity, particularly in long-standing cases of diverticulitis, may cause very mild symptoms, there being little inflammatory reaction by the peritoneum. The explanation for this is not known.

The prospect of recovery after early operation for perforation will vary with the length of history of diverticulitis which precedes the catastrophe and with the degree of periceolitis revealed at operation. The prognosis after early operation in patients with no previous history or a history of short duration is excellent, for the bowel wall is still flexible and the perforation can readily be found and easily closed. The closure is reinforced by omentum and the pelvis drained. In some recovery may be complete and the patient experience no further trouble. In others a pericecal cutaneous fistula may develop (q. v.)

The real problem is in the surgical management of those cases in which there has been a long history of recurrent attacks of diverticulitis and in which at exploration the bowel is found to be immensely thickened and congested and particularly in those in whom the actual point of perforation cannot be identified. In such an event the safest procedure is to exteriorize the bowel, if this is practicable. An alternative is to attempt to seal off the inflamed area with pericecal fat and omentum in the old and the very ill patient the operation may need to be restricted to this procedure. In others
of bowel spasm or rigidity and of faecal retention in the pouches. Treatment for such patients is based upon three factors: avoidance of constipation, elimination of indigestible foods from the diet, and bowel hygiene.

Chronic Diverticulitis with Recurrent Exacerbations

The process is a continuous one, marked by periods of exacerbation in which are presented all the signs and symptoms and constitutional disturbances attendant upon the presence of an inflammatory mass in the left iliac fossa, sometimes including the passage of blood. This clinical state is the usual prelude to perforation, abscess, fistula, and obstruction.

It is generally held that the role of the surgeon only begins when one or other of these serious complications has developed. Accumulated experience of the fate of those who come to surgery late or for whom palliative colostomy has been performed has given rise to misgivings as to whether this conservatism is always justified. With the perfection of those new methods which have so greatly increased the safety of intestinal surgery it is necessary to take fresh stock of the situation. Resection of the inflammatory mass during a quiescent period and when the process is yet young is an attractive and effective alternative to some palliative procedure deferred until the disease is long established and the dangers of radical operation increased by the grosser nature of the lesion and the added years of the patient.

There is called for not so much a categorical formula for treatment but a change of attitude from let us await complications before surgery in order to circumvent complications by surgery. The fate of many patients who have been subjected to colostomy as the sole treatment of diverticulitis including its complications bears evidence that its use should rarely, if ever, be entertained except as a preliminary to a radical operation.

The ideal procedure is segmental resection of the affected area and restoration of continuity by immediate end-to-end anastomosis with Paul's operation as an alternative possibility. A temporary proximal colostomy should normally precede resection by some months.

Diverticulitis during an Acute Exacerbation

It is important to envisage the probability of the presence of an abscess in the pericolic tissue during an acute exacerbation and by treatment to endeavour to prevent its spread. There may be occasions when the surgeon is tempted to consider operation and
Perforation and Peritonitis

Perforation may be the first indication of the presence of diverticula in the bowel in the younger age group. A violent seizure of acute pain is followed by evidence of spreading peritonitis which should lead to immediate laparotomy. The greatest danger is in delay. Perforation is however, more commonly a complication of the established condition and may be the climax of a severe exacerbation of diverticulitis. At operation a thickened and greatly inflamed colon is then found and though pus with fecal material and foul-smelling gas are discovered on opening the abdomen, it may be impossible to find the actual perforation. In some such cases the peritonitis is doubtless due to rupture into the peritoneum of a periolic abscess and the communication of the latter with the lumen of the bowel may have become sealed off.

Occasionally perforation into the peritoneal cavity, particularly in long-standing cases of diverticulitis, may cause very mild symptoms, there being little inflammatory reaction by the peritoneum. The explanation for this is not known.

The prospect of recovery after early operation for perforation will vary with the length of history of diverticulitis which precedes the catastrophe and with the degree of pericolicitis revealed at operation. The prognosis after early operation in patients with no previous history or a history of short duration is excellent, for the bowel wall is still flexible and the perforation can readily be found and easily closed. The closure is reinforced by omentum and the pelvis drained. In some recovery may be complete and the patient experience no further trouble in others a sigmoido cutaneous fistula may develop.

The real problem is in the surgical management of those cases in which there has been a long history of recurrent attacks of diverticulitis and in which at exploration the bowel is found to be immensely thickened and congested and particularly in those in whom the actual point of perforation cannot be identified. In such an event the safest procedure is to exteriorize the bowel, if this is practicable. An alternative is to attempt to seal off the inflamed area with periolic fat and omentum in the old and the very ill patient the operation may need to be restricted to this procedure. In others,
in whom there is a prospect of subsequent resection, a transverse divertional colostomy should be performed at the same time. In either event the peritoneal cavity should be drained and antibiotics given.

Abscess

Abscess formation is a very common accompaniment of recurrent diverticulitis. The abscess may be small and may not give clinical evidence of its presence, but remain buried in a thick mass of pericolic fibrous tissue. It may, however, develop quickly and form a large collection of pus under tension seeking an exit. It may burst into the peritoneal cavity, into a neighbouring hollow organ, or into the abdominal parietes on the left side. The bursting of an abscess into the peritoneal cavity usually causes acute spreading peritonitis, demanding immediate operation. The method of operative procedure being as for perforated diverticulum. The outlook for such cases is grave. Occasionally, however, evidence of rupture of an abscess may be slight and may cause little peritoneal reaction. Rupture of an abscess into neighbouring bowel may result in spontaneous relief from symptoms. Rupture into one of the female pelvic organs, and even into the ureter, has been described, but the commonest organ to be affected is the bladder, with later development of sigmoid vesical fistula.

The appearance of an abscess underneath the abdominal parietes is self-evident and the treatment should be immediate drainage without any direct attack upon the bowel. Drainage of such an abscess usually results in relief from the acute diverticulitis, but a fistula will probably persist through the drainage wound (sigmoid cutaneous fistula). Occasionally an abscess may develop in the parietes insidiously without any preceding history of a severe attack of diverticulitis closely resembling a cold abscess due to tuberculous disease.

Sigmoid cutaneous Fistula

Fistulae on to the skin which may sometimes be multiple are rarely spontaneous but usually develop after opening in acute abscess after operation for perforation or as a complication of radical operation upon sigmoidal vesical fistula. Those following drainage of an abscess tend to heal spontaneously and the question of operation should therefore, in any case, be deferred for several months. A decision will finally be needed as to whether the fistula should be allowed to remain or an attempt at cure be made. The latter must be of a radical nature, with excision of the affected
bowel, for no compromise is permissible between doing nothing and the radical operation.

The decision to operate will rest mainly upon the local and general condition of the patient. The fistula may cause little inconvenience and may be well tolerated by the patient, especially if old. Its presence acts, in fact, as an insurance of some degree against the development of further inflammatory masses. In the younger age group and in those who find the presence of a fistula embarrassing and irksome, radical operation should usually be attempted. At the present day the procedure is a safe one and the only serious risk is a recurrence of the fistula as a result of leakage from the suture line. Though it is possible sometimes to do the operation in one stage, it is usually expedient to precede the excision by a transverse colostomy allowing some two to three months between the two operations.

Sigmoido-vesical Fistula

Diverticulitis is the commonest cause of sigmoido vesical fistula. Usually it is a complication of recurrent diverticulitis which has been a cause of ill health for some years, though it sometimes occurs in the younger age group following a short history of diverticulitis. In 15 cases the average duration of symptoms of diverticulitis preceding the development of a fistula in the bladder was three years and nine months.

The history varies considerably, but usually the formation of a fistula is preceded by an acute attack of diverticulitis with peritonitis, the appearance of a tender mass low down in the left iliac fossa and frequency of micturition. The tender mass is due to an abscess which eventually ruptures into the bladder with immediate relief of the acute abdominal symptoms, but exacerbation of urinary symptoms. There is severe vesical pain with intense frequency, and the urine is heavily laden with fecal smelling pus. There may also be hematuria. Gas followed by feces, may not appear for some days, though a week or more may pass. In one case, pain, micturition was not established as a regular feature until after many months. The interval between the rupture of the abscess and the presence of feces will depend upon the length of time it has taken to establish a fistulous track.

The acute bladder symptoms tend to subside quite quickly and may eventually disappear. After some weeks the bladder mucosa except at the site of the fistula will return to a normal cystoscopic appearance. After the initial outpouring of feces the fistula is liable to close sufficiently to prevent any further escape of semi solid
material except as an occasional incident and the main symptom will therefore be the passage of gas per urethrum.

Ascending infection of the kidney is rare and this should be taken into account when considering treatment. Once a fistula has declared itself it is wise to defer any question of operative treatment for some months, in order to allow the periurethral inflammation to subside and to allow the bladder to establish immunity. Further more the fistula may rarely heal spontaneously.

The criteria for operation are similar to those governing sigmoid can be a little more emphasis upon conservatism. There should be no compromise between non-interference and radical cure. Colostomy alone is an inflation and not a cure and should be rigidly avoided, for it adds to the patient's discomfort without necessarily affecting the fistula.

Older people and especially in those whose fistula developed after a long history of recurrent diverticulitis are best advised against radical operation though selection of cases for operation is a matter of clinical judgment and cannot be the subject of any ex Cathedra statements. Radical cure should certainly be entertained in the younger age group of patients and especially in those in whom there has been no great length of history of diverticulitis before the fistula developed. The principle of a preliminary transverse colostomy preceding the radical operation by two to three months should usually be followed. Temporary supra pubic drainage of the bladder after repair of the fistula and resection of the involved bowel is desirable.

Obstruction

The mass of fibrosis which develops around the inflamed sigmoid may be responsible for producing acute small intestinal obstruction as a result of adhesions. This is a rare consequence, however, and the more likely result is a narrowing of the sigmoid from contraction of the scar tissue. The state of chronic obstruction which results may closely simulate carcinoma of the bowel. Diagnosis between the two is in fact not always possible though the history and the radiological appearance particularly if a double contrast enema is used will usually enable the differential diagnosis to be made. It is necessary to emphasize that the presence of diverticula in the colon as revealed by the radiograph does not preclude the possibility of new growth. For although there is no evidence of direct causal association between diverticulosis and cancer both are common. In a series of 162 patients with diverticulosis, nine had radiological evidence of cancer of the bowel. In other words the
diverticulosis patient is neither more nor less liable to cancer of the bowel than is the normal subject.

It goes without saying that chronic obstruction due to diverticulitis will demand surgical relief. In older people who are poor operative risks, a short circuit operation around the area of the obstruction is an excellent alternative to any attempt at resection. Permanent colostomy should be avoided.

Diverticulosis and Diverticulitis of the Cecum

Diverticulitis of the cecum occupies a somewhat special place for it differs from diverticulitis of the sigmoid colon in three particulars:

1. The age incidence is lower.
2. The pouches are often solitary.
3. The pouches are peculiarly liable to cause acute symptoms.

![Image: Solitary diverticulum of the cecum: Operation specimen from a man of 42.]

Figure 67 Solitary diverticulum of the cecum: Operation specimen from a man of 42.

Acute diverticulitis of the cecum, which closely resembles acute appendicitis in its clinical features, may in fact be the first indication of the presence of a pouch. Rarely, chronic inflammation of a diverticulum causes a mass in the right iliac fossa which is liable...
to be mistaken for cancer and the true nature of which only comes to light after excision (Fig 67)

The management of a case of acute diverticulitis revealed at operation undertaken on a diagnosis of acute appendicitis will vary according to the findings. There have been cases recorded in which the inflamed diverticulum was readily seen, and was excised. In others there is found a mass of inflammatory tissue and the wall of the cecum itself is acutely inflamed. The best procedure for the latter condition is to exteriorize the bowel, with subsequent excision and finally closure. This is a protracted and irksome experience for the patient but there appears to be no alternative.

Diverticula of the Appendix

Diverticula of the appendix may be demonstrated in about 4 per cent of appendices removed at operation. They may be associated with generalized diverticulosis of the colon or may result from disorganization of the appendix musculature as a result of chronic fibrosis. They are not in themselves of any notable clinical significance.

References

Edwards H C 1939 Diverticula and Diverticulitis of the Small and Large Intestine John Wright & Sons Bristol
Edwards H C 1953 Postgrad med J 29 20
Kron S D and Specter J 1950 Gastroenterology 15 62
Walker R M 1945 Ibid 32 457
PART III—THE THORAX

T. HOLMES SELFRIDGE

CHAPTER XVII

THE LUNGS AND PLEURA

INTRODUCTION

One of the most dramatic advances in modern medicine is the application of surgery to the treatment of disorders of the heart. This field, which was considered closed to the surgeon until recently, has progressed by leaps and bounds since it was established that anastomosis between great vessels and operations on the valves of the heart were practicable. Congenital lesions of the heart and some valvular conditions are now accepted as within the routine scope of cardiac surgery, and a mass of experimental work largely from North America, suggests that the possibilities of treatment are by no means exhausted.

In pulmonary surgery there is also an increasing volume of work, mostly in connection with cancer and pulmonary tuberculosis. In this field the principles established eight or ten years ago have hardly changed though the technique and results have improved considerably. Chemotherapy has come to play an important part in the treatment of supplicative conditions of the lung and pleura and has influenced the use of surgery in the treatment of pulmonary tuberculosis to no small extent. Resection of lung is now accepted as a recognized form of treatment in phthisis.

Another significant feature in thoracic surgery in Great Britain is the great increase of fully trained specialists in this work. The demand for surgical treatment in pulmonary tuberculosis has contributed to this development and the thoracic surgeon and his team is taking a prominent place in both chest medicine and surgery. It is erroneous to regard the thoracic surgeon as a specialist in the narrow sense of the term since he has to deal with nearly all systems of the body—bone, lung, esophagus and stomach, heart and great vessels and certain nerves are all included so that it would be better to refer to him as a general surgeon working within certain anatomical confines.
The ancillary branches of anaesthesia and physiotherapy are essential to modern thoracic work. Both these are becoming more and more specialized with the increasing volume of work and the task of the surgeon has correspondingly been simplified.

Anaesthesia

Thoracic surgery owes a great deal to modern anaesthesia which with improved methods and new drugs has simplified the course of the actual operations. Indotraheal intubation and endobronchial blocking have enabled the anaesthetist to exclude the lung of the operation side from the anaesthetic circuit so that the unaffected lung can be fully oxygenated at the same time as the anaesthetic gases are administered. In addition the mediastinum can be prevented from being adversely displaced and harmful secretions can be sucked out of the bronchial tree. Thoracic anaesthetists in this country are expert bronchoscopists and they use this procedure freely in the placing of endobronchial apparatus and sucking out secretions during and after operation.

The effect of posture during the operation has been recently discussed by the writer (1952). The advantages of the face down or prone position have been put forward by Parry Brown (1948) and by Overholt (1949) who favour this posture for lung operations.

Barbiturates such as thiopentone are freely used in conjunction with muscle relaxants so that the amount of anaesthetic gases can be reduced. Ether and cyclopropane have the disadvantage of being explosive which precludes the use of diathermy and in many clinics gas oxygen only is used in conjunction with basal agents. Intravenous procaine or one of its allied derivatives is becoming increasingly popular particularly in cardiac surgery where its effect is to reduce irritability of the heart muscle.

The main principles of thoracic anaesthesia are to maintain full oxygenation of one lung during operation and to use a controlled form of anaesthesia which lets the surgeon operate in comfort without the harmful effects of an open pneumothorax becoming apparent.

Physiotherapy

Physiotherapy is essential if quick and adequate recovery of lung function is to be obtained. Exercises based on active inspiratory efforts are taught before operation and then continued afterwards in spite of discomfort with increasing intensity and effort. In a satisfactory case the operation side will be expanding equally with its fellow within a week or ten days and if the chest wall and
Pleuritis usually moves to the lung function will fall out. No chest surgery can be efficient in the absence of a trained team of physiotherapists who cooperate with the nursing staff in postoperative treatment and rehabilitation.

Recovery of thoracic function is also aided by allowing the patient out of bed at an early stage. For example, after the operation of pneumonectomy if there is no untoward occurrence, the constitutional disturbance is so slight that the patient can be allowed out of bed in forty-eight hours and be fully dressed in a week. At the end of two and a half weeks to three weeks the patient without complications is able to leave the hospital with an erect posture to continue his convalescence and rehabilitation. The main point to remember is that a chest operation does not interfere with the abdomen and legs and the ordinary posture adopted in bed can easily be detrimental and lead to kyphoscolio unless most careful nursing and physiotherapy are used.

A number of factors have contributed to the safety of thoracic operations—careful assessment and prolonged preoperative treatment improved technique modern anesthesia blood transfusions chemotherapy all play their part with the result that the immediate operative mortality is surprisingly low. Antibiotics notably penicillin have provided an excellent cover against pleural and pulmonary infection. Few major operations are performed without a blood transfusion varying between 1 and 2 units.

Postoperative complications take their toll particularly in aged and toxic patients but chest complications (except in lobectomy) are uncommon and venous thromboses with pulmonary embolism is almost unknown. There are obvious added risks in cardiac surgery, but here also the recovery rate is satisfactory and the operative mortality low.

PLEURAL INFECTION

Infections of the pleural cavity have been considerably influenced by the introduction of antibiotics. In the first place, the incidence of the primary cause—pneumonia—has been markedly reduced and the number of empyemata has correspondingly fallen. On the other hand the sterilizing effect of antibiotics notably penicillin has caused many practitioners to overlook the importance of obliterating the pleural cavity by means of early and efficient re-expansion of the lung. A thick walled empyema with sterile contents has often provided an avoidable problem for the surgeon.

Empyema often demonstrates the unfortunate example of the
The ancillary branches of anæsthesia and physiotherapy are essential to modern thoracic work. Both these are becoming more and more specialized with the increasing volume of work and the task of the surgeon has correspondingly been simplified.

Anæsthesia

Thoracic surgery owes a great deal to modern anæsthesia which with improved methods and new drugs has simplified the course of the actual operations. Indotracheal intubation and endobronchial blocking have enabled the anæsthetist to exclude the lung of the operation side from the anæsthetic circuit so that the unaffected lung can be fully oxygenated at the same time as the anæsthetic gases are administered. In addition, the mediastinum can be prevented from being adversely displaced and harmful secretions can be sucked out of the bronchial tree. Thoracic anæsthetists in this country are expert bronchoscopists and they use this procedure freely in the placing of endobronchial apparatus and sucking out secretions during and after operation.

The effect of posture during the operation has been recently discussed by the writer (1952). The advantages of the face down or prone position have been put forward by Perry Brown (1948) and by Overholt (1949) who favour this posture for lung operations.

Barbiturates such as thiopentone are freely used in conjunction with muscle relaxants so that the amount of anæsthetic gases can be reduced. Ether and cyclopropane have the disadvantage of being explosive which precludes the use of diathermy and in many clinics gas oxygen only is used in conjunction with basal agents. Intravenous procaine or one of its allied derivatives is becoming increasingly popular particularly in cardiac surgery where its effect is to reduce irritability of the heart muscle.

The main principles of thoracic anæsthesia are to maintain full oxygenation of one lung during operation and to use a controlled form of anæsthesia which lets the surgeon operate in comfort without the harmful effects of an open pneumothorax becoming apparent.

Physiotherapy

Physiotherapy is essential if quick and adequate recovery of lung function is to be obtained. Exercises based on active inspiratory efforts are taught before operation and then continued afterwards in spite of discomfort with increasing intensity and effort. In a satisfactory case the operation side will be expanding equally with its fellow within a week or ten days and if the chest wall and
failure of medicine and surgery to co-operate. The diagnosis and early treatment are in the hands of the physician who sometimes refers the patient to the surgeon only when the condition is becoming chronic. In the days before chemotherapy drainage was the basis of treatment and was urgent on account of the toxaemia produced by retained pus. At the present time, the efficient sterilization of the pus by antibiotics may lead to a sense of false security unless the lung is re-expanded at the same time.

The stages through which pleural infection passes have a definite relationship to treatment. The first effect of bacterial invasion is to produce an effusion which may teem with pyogenic organisms and the whole pleural membrane is potentially involved. If air is admitted through an injudiciously used aspirating needle the lung will retract from the chest wall particularly at the apex, and a total empyema result. Within a few days, effusion becomes turbid and fibrin tends to be precipitated from the effusion which contains a variable amount of fibrinogen. This stage can be conveniently referred to as diffuse suppurative pleurisy.

As the condition progresses the pus thickens and the fibrin deposit forms a layer over the chest wall and over the lung surface. At the edges of the cavity, the lung and chest wall are in contact and the condition can be referred to as a localized pleural abscess. Later, the wall of the abscess or empyema becomes firmer and the fibrin organizes into a sheet which is usually two or three times as thick on the chest wall as over the lung. Later cicatrization contracts the chest wall bringing ribs closer together and restricting thoracic movement at the same time the lung is tied down by this scarring.

Many pyogenic cocci produce fibrinolytic enzymes which prevent excessive deposition of fibrin, but if the organisms are killed by the action of penicillin, this enzyme effect is removed and fibrin remains unaffected. It is for this reason that penicillin-treated empyemata develop unduly thick walls. One method of treatment is based on the introduction of fibrinolytic enzymes such as streptokinase or streptodornase which have some solvent action on the fibrin.

Treatment

The principles of treatment are governed by the stage of the infection. Early diagnosis is not always straightforward as the clinical and radiological signs of the lung infection often obscure the pleural effusion, but conclusive evidence is afforded by the withdrawal of fluid by the aspirating needle. The character of the pus and its bacteriological content is rapidly estimated, and here a direct microscopic smear may give better information than a culture.
The pleural fluid is then aspirated completely, but without admitting any air which might convert a localized pocket into a total empyema. A two-way tap and well fitting needle and syringe are necessary for the aspiration, which must be repeated as often as fluid collects. This may mean aspiration every day or every other day and not a casual aspiration at irregular intervals. Efficient aspiration removes pus and encourages the collapsed lung to re-expand.

Frequently aspiration fails because the pus is too thick or diagnosis is made too late. The treatment of a pleural abscess depends on

the state of the contents. If there is infection open drainage following rib resection is the correct course. The tube remains in the cavity until the lung has fully expanded and the two pleural surfaces are in complete apposition. This process is aided by intensive breathing exercises which must be persisted with from the onset until the final healing. The disadvantage of open drainage is that some degree of secondary infection will result and delay healing.

A sterile abscess does not necessarily require drainage. If the contents can be fully removed by aspiration breathing exercises may allow the lung to re-expand and in fulness of time the fibrin...
wall will absorb. This is possible in children and in early cases in which the fibrin has not seriously restricted the chest wall movements. It is impracticable if there are masses of contained fibrin and pus and if the walls of the empyema are rigid. In this latter event a preliminary trial of streptokinase injections can be made.

The technique is to aspirate as completely as possible and to inject on alternate days 200,000 units of streptokinase with 70,000 units of streptodornase. The liquefied contents are aspirated twenty-four hours after the injection. This method, though extremely satisfactory in treating clotted haemothorax, has only a limited success in the case of empyema. Trypsin is another agent used for biological decortication. 250,000 units are injected into the empyema which has been previously emptied as completely as possible. A buffered alkaline phosphate solution is used to maintain the correct pH and the dissolved products are aspirated fully after twenty-four hours and the injections repeated for four to seven consecutive days. Antihistamine drugs should be used to control any sharp constitutional reaction.
If there are masses of retained fibrin or if loculation is present, streptokinase or trypsin should be given only a limited trial and if these fail a limited thoracotomy should be performed and a complete pleural toilet carried out ensuring that all foreign matter has been removed. If the walls of the cavity are not too rigid the skin

only is sutured. Should there be any recrudescence of infection the insertion of a drainage tube is a simple matter.

Where the empyema is chronic, say eight weeks from the onset and the contents remain sterile, a more extensive thoracotomy is used and after emptying the contents *decortication* of the lung is carried out. If the lung has been tied down by the fibrin coat it will expand as it is being freed and if suction drainage is used the lung will be rapidly expanded and the space obliterated. *Pleurectomy* which involves excision of both parietal and visceral aspects of the empyema is a more popular operation. It requires a major thoracotomy exposure so that the corners of the empyema and
wall will absorb. This is possible in children and in early cases in which the fibrin has not seriously restricted the chest wall movements. It is impracticable if there are masses of contained fibrin and pus and if the walls of the empyema are rigid. In this latter event a preliminary trial of *streptokinase* injections can be made.

The technique is to aspirate as completely as possible and to inject on alternate days 200,000 units of streptokinase with 70,000 units of streptodornase. The liquefied contents are aspirated twenty-four hours after the injection. This method though extremely satisfactory in treating clotted haemothorax has only a limited success in the case of empyema. *Trypsin* is another agent used for biological decortication. 250,000 units are injected into the empyema which has been previously emptied as completely as possible. A buffered alkaline phosphate solution is used to maintain the correct pH and the dissolved products are aspirated fully after twenty-four hours and the injections repeated for four to seven consecutive days. Antihistamine drugs should be used to control any sharp constitutional reaction.
CHRONIC EMPYEMA

If there are masses of retained fibrin or if localisation is present streptokinase or trypsin should be given only a limited trial and if these fail a limited thoracotomy should be performed and a complete pleural toilet carried out, ensuring that all foreign matter has been removed. If the walls of the cavity are not too rigid the skin

only is sutured. Should there be any recrudescence of infection the insertion of a drainage tube is a simple matter.

Where the empyema is chronic may eight weeks from the onset and the contents remain sterile a more extensive thoracotomy is used and after emptying the contents decortication of the lung is carried out. If the lung has been tied down by the fibrin coat it will expand as it is being freed, and if suction drainage is used the lung will be rapidly expanded and the space obliterated. Pleurectomy which involves excision of both parietal and visceral aspects of the empyema is a more popular operation. It requires a major thoracotomy exposure so that the corners of the empyema and

FIG 70

11s 69 and 70 Pleuroctomy. Radio opaque oil injected into an empyema space gives accurate information as to size and shape. The ring marks the position of the tube opening on the skin. Lateral as well as antero posterior views are essential.
diaphragmatic surfaces can be excised. Two or three suction tubes are used until the lung is fully expanded.

These excision operations are often valuable, but may be used too freely to the exclusion of adequate physiotherapy. In units where these latter are efficient the necessity for major operations is slight.

Chronic Empyema

In long standing empyema there is usually a straightforward cause for the persistence of the pleural dead space. This can be remedied by adequate and continued drainage with adequate physiotherapy over a period of weeks or months, except in the case of tuberculosis infection or empyema produced by carcinoma. Major operations such as Schede's thoracoplasty or mutilating pleuroplastic procedures are practically never necessary. The causes and treatment of chronic empyema were discussed by Sellers and Cruickshank (1951) in an analysis of 622 cases, and it was significant that delayed or inadequate treatment was responsible for the condition in 448 instances. The establishing of adequate drainage and the full use of physiotherapy were successful in curing 513 cases, the remaining 100 being treated by pleurectomy, muscle grafting or other more major surgical procedures.

PULMONARY SUPPURATION

Bronchiectasis

There has been little change in the attitude to the treatment of bronchiectasis in recent years. Emphasis is still laid on conservative treatment and the preparation of the patient for operation by physical measures particularly breathing exercises and postural drainage. The value of antibiotics in reducing the infectivity of sputum is admitted but their importance should not be exaggerated nor should they be used for a prolonged period. If surgical treatment is not practicable regular and continued postural drainage should be considered. This can be carried out by leaning over the side of the bed or lying on a double inclined wooden plane (which can be made by any carpenter) covered by a mattress if the patient can manage this, and many find themselves quite capable of doing so. Several hours of postural treatment are possible during the night. The elimination of gross oro nasal sepsis is very necessary, but extensive drainage operations on the sinuses are avoided if possible.

Surgical Treatment Lobectomy or lung resection is the only possible curative method in established bronchiectasis, and if the
disease is confined to part of one lung, excision of that diseased lobe or segment will cure the condition. If, however, the disease is more diffuse any surgery which involves bilateral operations or the removal of scattered segments does not always give such a good result. The patient may well be relieved of a great deal of cough and expectoration, but will still have a 'wet' chest with some sputum. Removal of one segment or lobe produces little effect on respiratory function, indeed the removal of two with the excised tissue results in considerable constitutional improvement. Two lobes or one lung can be excised without undue loss of respiratory efficiency. A child can even play games, but if the excision has to be bilateral the loss of lung tissue may give rise to some physical limitation. The limit to which resection can be taken is reached if both lower and middle lobes are removed. Children can survive in moderate comfort on two upper lobes only, though their fate in later life is not yet determined.

The mortality of lobectomy is low probably under 3 per cent but the post operative course is sometimes complicated by atelectasis on the operation side and, in increasingly rarer instances by bronchial fistula and pleural infection. The former can be remedied by urgent postural drainage or by bronchoscopy, the latter usually requires drainage if pleural aspiration and antibiotics fail.

EDWARDS R. A. F.R.G.
straightforward lobectomy should not have to be retained in hospital for more than two and a half to three weeks after operation, though the period of preparation may well have taken an equal time. No surgery is possible without satisfactory bronchograms, and increasing experience with these is producing much better results than it did a few years ago. Water soluble agents are sometimes being used instead of an iodine containing oil, these substances are more irritant and do not give such good "pictures" but they are absorbed quite quickly and leave no residual radio opaque shadows.

Fig 72 Bronchogram. Bronchectatic changes are visible in the middle lobe. The remaining lobes are normal.

Lung Abscess

Possibly the most dramatic change in the handling of any condition in thoracic work has been the treatment of lung abscess. The subject which from the etiological aspect has been admirably described in a monograph by Brock (1952) has been completely changed in incidence and in method of treatment since the introduction of antibiotics. Before that period drainage of an obstructive abscess, and even excision of a lobe or lung was frequently necessary.
Fig 73
Fig 74
Figs 73 and 74 Obstructive lung abscess following an operation under general anaesthesia. (a) Abscess cavity with fluid level treated by intensive chemotherapy. (b) Resolution obtained two months from the onset.
and these procedures carried an appreciable mortality. Drainage can now be considered as practically obsolete, chemotherapy having changed the whole course of the condition. At the same time the incidence of these abscesses has appreciably diminished and the stinking fetid types are uncommon.

Treatment. As soon as the abscess is diagnosed massive chemotherapy should be inaugurated. Small doses of penicillin are ineffective, but if a daily dose of two to four million units is given and continued for three to four weeks or more a favourable result is almost certain. Often in the early stages there is little apparent response to treatment, but this should not lead to an alteration in policy. The organisms in the sputum are rarely sensitive in vitro to penicillin but penicillin should be used unless, as in the case of B. Friedlanderi, there is a clear indication to use streptomycin.

After the acute stage of the illness has passed the abscess may disappear or leave a residual cyst-like space usually associated with some bronchectasis. If a thin-walled cyst persists recrudescence of infection may occur at a later date or if there are any untoward symptoms a segmental resection can be practised when the patient has recovered from the ill effects of the primary lesion. Emergency operations on fulminating supplicative lung lesions carry a high mortality in spite of chemotherapy, blood transfusions and modern technical methods.

PULMONARY TUBERCULOSIS

The main recent feature in the treatment of pulmonary tuberculosis has been the advent of effective chemotherapy. Streptomycin, para aminosalicylic acid (P.A.S.) and nowisoniazide have all been shown to be of value in certain phases of the disease. They also have played some part in ensuring safer surgery particularly when lung resection is practised.

Collapse Therapy

The surgical treatment of pulmonary tuberculosis has shown a steady increase in controlling the most stabilized aspects of the disease. Collapse therapy can be used to close cavities and to reduce the adverse effects of fibrosis. Thoracoplasty has become increasingly popular in this respect. The efficiency of this selective and permanent form of collapse has been established from a study of the long term results. For example in the writer's series (1947) of 633 patients who were followed up more than 81 per
Figs 75 and 76 Thoracoplasty for large left apical cavity with disease extending through most of the upper lobe. The collapse obtained obliterates the cavity but preserves some basal function.
Fig 77 and 78 Left apical cavitation treated by extensive apicolysis with implantation of Lucite spheres to maintain the collapse. Bird cage type of operation. Though the ribs are left intact the periosteum and intercostal muscles are stripped free and left attached to the lung as the apicolysis is performed.
considered satisfactory, and the operative mortality was only 2.7 per cent.

In addition to thoracoplasty there has been a fluctuating vogue in extrapleural operations. Extrapleural pneumothorax has still its advocates, but there have been a number of modifications of the apicolysis procedures which aim at preserving the rib cage and maintaining the collapse of lung with an artificial substance. For example, Morriston Davies (1951) introduced a polythene pack to hold the apex down and has recorded 97 cases in which this operation was used. A variety of osteoplastic operations in which the periosteum and muscles are freed from the ribs and allowed to fall down with the freed apex have been described. The dead space so formed has been examined with a variety of substances such as lucite or polythene balls. Lewis and Cleland (1950) describe the successful use of this "bird cage" type of operation in 125 cases with three deaths and good results in the early follow-up, there were only five examples of post-operative spread. The practice of combined phrenic nerve interruption and pneumoperitoneum is still popular where surgery is not readily accessible but on the whole it is not so popular as in the immediate years after its introduction.

Resection

The most recent addition to surgery has been the increasing use of lung resection in the form of segmental removal lobectomy or pneumonectomy, and this type of operation has had considerable popularity in some clinics. In many records from the United States and in some from this country it would appear that thoracoplasty and collapse have been practically abandoned in favour of resection. There are two schools of thought as regards resection: the one in which resection is regarded as an efficient form of treatment for comparatively limited disease and in which it has superseded collapse operations. The other school adheres to collapse measures which in the past have given and continue to give good results reserving resection for cases in which collapse has failed or is impracticable. It is of little value trying to compare the results of the two schools, since the selection of patients suitable for surgery differs too widely.

The problem is a complex one and there is a matter of principle involved concerning how much tuberculous disease is to be removed or should be removed from the body. If the disease is regarded as a general condition with a local manifestation then only mechanical disabilities such as cavities or stenoses should be treated but where tuberculosis is regarded principally as a pulmonary condition
the enthusiasm for excision of any focus of disease is likely to be greater.

The average practice in this country is to regard resection as an additional procedure where collapse has not been successful or would not be suitable. Commonly accepted indications could be classified as follows —

1. Tuberculoma, which is a generic term to cover several pathological conditions and is really a radiological diagnosis. It includes such conditions as solid foci, inspissated cavities and some primary foci. These are potential dangers in the future if there is a tendency for them to cavitate and to spread.

2. Cavities unsuitable for collapse such as those in the apex of the lower lobe where pneumothorax and phrenicectomy have failed.

3. Cavities persisting under thoracoplasty. A well-executed thoracoplasty sometimes fails to close a large cavity which remains as a pear-shaped slit.

4. Broncho stenosis which is one of the few conditions in which

Fig 79 Tuberculoma in right upper lobe
the tuberculous patient may produce much sputum. Here collapse
would be of little value. Excision undertaken for broncho stenosis
may well lead to pneumonectomy because of gross adhesions to the
chest wall and between the lobes.

7. Destroyed lung in which the disease process has progressed
in spite of conservative measures or in which the lung has been so

![Illustration of a chest X-ray with labeled parts]

Fig. 80 Tuberculous cavities in the apex of the right lower lobe.
Lobectomy was successfully undertaken after the acute phases
of the disease had been controlled by rest and chemotherapy.

destroyed by cavitation that it is functionally valueless and a
danger to the patient.

Danger of excision is that once inside the chest a more extensive
operation than that planned may develop sometimes for technical
reasons more often because a great deal more disease is actually
palpated in the lung than was suspected from the radiographs.
It is impossible for the surgeon to tell which nodules of disease are
dangerous to leave behind and which areas should be removed.
The chief complication of the operation lies in tuberculous infection
of the draining bronchus which, when cut across, will not heal as
readily or securely as, for example, in lobectomy for bronchectasis.
The risk of bronchial fistula and a tuberculous empyema is therefore present and with it the knowledge that a bad result will follow unless this can be remedied. Early expansion of residual lung is very important, and one or more drainage tubes to which suction is applied are used to aid re-expansion of lung. Some form of thoraco-plastic collapse is commonly used to avoid over-distension of lung tissue or to close down a potentially infected dead space.

Fig. 81 Tuberculosis. Destroyed right lung treated by pneumonectomy.

Tuberculous empyema often follows a badly chosen pneumothorax which develops fluid and is a formidable proposition. The intense fibrosis of the tuberculous process freezes or fixes the chest wall and the constricting visceral layer prevents re-expansion of the lung. If repeated aspirations fail to induce re-expansion of the lung much more drastic treatment will be required. If the underlying lung is diseased a difficult and tedious thoraco-plasty in several stages will be needed to obliterate the space, but even this may fail in its object. Decortication or pleurectomy can be undertaken in con...
juncture with an apical thoracoplasty if the lung is relatively sound, but this is not always successful and the operation is rarely straightforward. Possibly the most satisfactory operation when the lung is damaged is a pleuropneumonectomy, as described by Sarot (1949). The whole pleural sac and lung are removed and the space closed by a later thoracoplasty. The operation is admittedly severe and produces a considerable degree of shock, but it provides the only solution to a number of cases and is favoured by the fact that tuberculous infection of the space does not often recur, and if it does it is not as significant as if it occurred in the original space.

CANCER OF THE LUNG

Cancer of the lung or more correctly bronchial carcinoma, is now recognized as one of the most formidable problems in medicine. The incidence of the disease is alarming, and the figures for cancer deaths in Britain show that lung cancer is second only in frequency to carcinoma of the stomach and is more common than malignant disease of the breast.

The Registrar General's figures show that over the period 1939-48 deaths reported as being due to pulmonary cancer have more than doubled. The accompanying table illustrates this sinister increase in relation to some other causes of death.

<table>
<thead>
<tr>
<th></th>
<th>1938</th>
<th>1943</th>
<th>1948</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total deaths from cancer</td>
<td>68,799</td>
<td>74,010</td>
<td>81,514</td>
</tr>
<tr>
<td>Cancer of stomach</td>
<td>12,833</td>
<td>12,845</td>
<td>14,448</td>
</tr>
<tr>
<td>Cancer of lung</td>
<td>4,058</td>
<td>6,530</td>
<td>10,463</td>
</tr>
<tr>
<td>Cancer of breast</td>
<td>6,832</td>
<td>7,410</td>
<td>7,907</td>
</tr>
<tr>
<td>Deaths from pulmonary tuberculosis</td>
<td>21,282</td>
<td>21,092</td>
<td>18,798</td>
</tr>
<tr>
<td>coronary disease</td>
<td>15,409</td>
<td>20,438</td>
<td>36,640</td>
</tr>
</tbody>
</table>

The percentage in lung cancer mortality has risen in men from 1.5 in 1916 to 7.9 in 1935 and from 0.8 to 2.2 in the same years in women.

The reasons for this growing figure are not only due to greater awareness of the condition and improved radiological facilities, but also to an actual increase. Many theories have been advanced to account for this disquieting feature, but the only ones that have any statistical basis are smoky atmosphere and the effect of heavy cigarette smoking. The work of Bradford Hill and Doll (1950 and 1952) in this country has shown that a person who smokes fifteen or more cigarettes (not pipes or cigars) a day over a period of years
is at a considerably greater risk than a non-smoker. Figures from the United States tell the same story. No further explanation for this predisposition has been advanced though insecticides and other components of the cigarette have been studied. Workers in contact with chromium products are accepted as being vulnerable, and the incidence of the disease is much higher in smoky atmospheres than in more sunlit coastal areas. If the increase has to be accepted the responsibility of the profession in recognizing cases in which

<table>
<thead>
<tr>
<th>Pleural</th>
<th>Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effusion</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>Chest Wall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bronchial</th>
<th>Cough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atelectasis</td>
<td>Sputum</td>
</tr>
<tr>
<td>Bronchietasis</td>
<td></td>
</tr>
<tr>
<td>Abscess</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>Toxaemia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mediastinal</th>
<th>Loss of Voice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous Obstruction</td>
<td></td>
</tr>
<tr>
<td>Auricular Fibrillation</td>
<td></td>
</tr>
<tr>
<td>Nerve Involvement</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>Atelectasis</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing relation of signs and symptoms to the site of the growth](image)

Treatment is possible is clear and the only hope of improving the present situation is to diagnose the condition at a much earlier stage than at present.

One of the first things is to realize that the average textbook description of lung cancer is the description of advanced and almost certainly inoperable disease. In the early case clinical signs and symptoms may be absent or minimal and the diagnosis can only be made by radiology. Mass miniature radiography routine screening of students and nurses screening of the chest during a barium meal provide a number of operable cases, but these
"accidental" discoveries are only a small proportion of the total. Any untoward chest sign or symptom must be fully investigated if the early stages of the disease are not to be overlooked, and this includes chest radiography.

The signs and symptoms are variable in the extreme and depend on the situation of the growth. For general purposes three main groups can be considered.

1 Lung Fields

If the growth arises in the middle of the lung it may reach a considerable size before producing any symptoms. The clinical

![Fig 83 Abscess in the apex of the lower lobe produced by a squamous cell carcinoma](image)

features will depend on bronchial obstruction. An irritant and non-productive cough is produced by pressure on a major bronchus but more definite signs will result if the bronchus is occluded and atelectasis follows. This does not lead to much disturbance in the absence of infection though sudden atelectasis gives rise to shortness of breath. Infection will lead to the clinical picture of pneumonia and the diagnosis of "unresolved pneumonia" is
frequently a misnomer for carcinoma. Bronchectasis can occur, also abscess. Abscess formation may be one of two types—a break down of the actual growth, or a more peripheral obstructive abscess. Hæmorrhage from ulceration of the growth is sometimes the first sign of the condition and should never be ignored no matter how slight. Frequently the sputum is stained for several days or end even if this is slight it should always be regarded as a highly suspicious feature.

2 Pleural Area

A growth close to the chest wall may produce the pain of pleurisy and in many cases an effusion develops. In the early stages this effusion is often clear but if the membrane is heavily involved the effusion will be bloodstained. Frequently pleural adhesions develop over a wide area so that the lung is fused to the chest wall. On the
other hand, the tendency of the growth is to spread along the pleural planes and not to break through into the chest wall

3 Mediastinum

The variety of signs produced by invasion of the mediastinum, usually by glandular metastasis, is extreme. Obstruction of the superior vena cava or left innominate vein results commonly from gland pressure. Loss of voice suggests involvement of the left vagus or recurrent laryngeal nerve. Paralysis of one half of the diaphragm can be produced by invasion of the phrenic nerve anywhere within the thorax. Difficulty in swallowing can be caused by displacement of the esophagus, which is a feature which should routinely be checked by a barium swallow. Auricular fibrillation can be caused by spread of growth along the pulmonary veins and its sudden recognition in a man who has had no previous history of heart disease should lead to the suspicion of a lung growth. Any one of these features means that the growth is probably inoperable even though it is the only and earliest sign.

General Condition

The traditional description of cancer can easily be applied to bronchial carcinoma in the terminal stages but the average early case shows none of these features. Indeed, if the patient has lost weight or is unduly lethargic and ill looking the possibility of an advanced condition should be considered. Admittedly, a patient whose growth has led to obstructive features with suppuration will show signs of secondary infection which are sometimes dramatically improved by chemotherapy. Emaciation and ill health in the presence of a small pulmonary shadow can be caused by invasion of the suprarenal glands by secondary deposits, and this is one of the more common sites for metastasis. Distant secondaries can occur anywhere but there is a predilection for brain and bone in addition to the suprarenals.

Recently a number of examples of arthropathy have been shown to be associated with the disease, and are remarkable in that the symptoms of the joint condition resolve within a few hours of the growth being removed. The most common form is clubbing with pulmonary osteoarthropathy, but practically any form of joint disease may be encountered and routine radiography of the chest should be considered in all patients in whom there is a sudden onset of arthritis. Similarly, one of the early general features may be a neurological condition again with no constant pattern, but one in which a diagnosis is difficult to determine.
Diagnosis

Bronchial carcinoma is essentially a disease of middle aged men, but no age or sex is exempt and patients of twenty and thirty years can be victims of this condition. The safe attitude to adopt towards a patient with any unexplained radiological shadow is to suspect a cancer until proved otherwise. Real difficulty may arise in differentiating a growth from a tuberculum and in recognizing a growth in a mass of inflammatory tissue. Repeated radiography at two or three week intervals while the patient is undergoing a course of chemotherapy may show some resolution of inflammatory shadows, but even this is not conclusive unless the shadow completely disappears. Even at thoracotomy it may be impossible to establish the diagnosis.

Bronchoscopy is an important diagnostic method, but has limitations particularly if the growth is peripheral to the larger bronchi. It is invaluable in cases where the growth presents in the major bronchi and where a biopsy can be taken. Investigation of the sputum for cancer cells is a diagnostic method of great value in the hands of experts, and should be used in cases of doubt or when bronchoscopy is negative or indefinite.

Pathology

It is customary to divide bronchial growths into four headings, three of which are undoubtedly malignant and the fourth which shows local invasive characteristics. The three groups are classified largely according to the predominant type of cell —

1. Squamous cell
2. Columnar cell
3. Undifferentiated or oat cell
4. Bronchial adenoma

Squamous cell tumours favour the larger bronchi and frequently lead to hemorrhage and obstruction with atelectasis. They are visible on bronchoscopy and are often favourable for treatment. Columnar cell carcinoma is usually peripherally placed and rounded, giving the appearance of being almost encapsulated. It does not produce many secondary complications and if not attached to the chest wall is capable of removal. Undifferentiated or oat cell growths are much more dangerous. They appear in the submucous tissues of the bronchus leading to stenosis of a rat tail type rather than a transverse one. They infiltrate and are particularly deadly because of the simultaneous appearance of hilar...
Fig 86 Carcinoma of lung. Collapse of right lower lobe produced by squamous cell growth.

Fig 87 Carcinoma of lung. Peripheral adenocarcinoma in the right upper lobe with enlarged para-tracheal glands.
Diagnosis

Bronchial carcinoma is essentially a disease of middle aged men but no age or sex is exempt and patients of twenty and thirty years can be victims of this condition. The safe attitude to adopt towards a patient with any unexplained radiological shadow is to suspect a cancer until proved otherwise. Real difficulty may arise in differentiating a growth from a tuberculous and in recognizing a growth in a mass of inflammatory tissue. Repeated radiography at two or three week intervals while the patient is undergoing a course of chemotherapy may show some resolution of inflammatory shadows, but even this is not conclusive unless the shadow completely disappears. Even at thoracotomy it may be impossible to establish the diagnosis.

Bronchoscopy is an important diagnostic method but has limitations particularly if the growth is peripheral to the larger bronchi. It is invaluable in cases where the growth presents in the major bronchi and where a biopsy can be taken. Investigation of the sputum for cancer cells is a diagnostic method of great value in the hands of experts and should be used in cases of doubt or when bronchoscopy is negative or indefinite.

Pathology

It is customary to divide bronchial growths into four headings, three of which are undoubtedly malignant and the fourth which shows local invasive characteristics. The three groups are classified largely according to the predominant type of cell —

1. Squamous cell
2. Columnar cell
3. Undifferentiated or oat cell
4. Bronchial adenoma

Squamous cell tumours favour the larger bronchi and frequently lead to haemorrhage and obstruction with atelectasis. They are visible on bronchoscopy and are often favourable for treatment. Columnar cell carcinoma is usually peripherally placed and rounded giving the appearance of being almost encapsulated. It does not produce many secondary complications and if not attached to the chest wall is capable of removal. Undifferentiated or oat cell growths are much more dangerous. They appear in the submucous tissues of the bronchus leading to stenosis of a rat-tail type rather than a transverse one, they infiltrate and are particularly deadly because of the simultaneous appearance of hilar mediastinal lymph node metastases.
or 5,000 r without ill effect. Others, particularly heavier built patients, suffer considerable sickness, loss of appetite and weakness.

Surgery Invasion in cancer of the lung can be divided into radical and palliative forms. In the former the growth is excised en bloc with the whole of the glandular field, this requires complete removal of the lung and the hilar glands. Palliative resections which often yield good results are used when the more extensive operation is contra indicated. For example, in an elderly man with poor lung function and a small growth a lobectomy is preferable to a more thorough operation which would leave the patient short of breath. It is not so much the question of operative shock that makes the distinction between the two, but the actual question of loss of lung tissue in a patient with impaired respiratory function.

The selection of patients for operation has to be judged under two headings —

1. Situation, size and type of growth
2. The general condition of the patient with special reference to respiratory function

To illustrate these points one can take the example of a small growth in the middle of the lung field in a young or healthy middle-aged patient. Here the chances of success are considerable. At the other extreme is a large growth close to the mediastinum in an emphysematous elderly man with bronchitis. Mediastinal involve...
glands which invade and produce pressure on the great vessels and main bronchi. Bronchial "adenoma" is a tumour of great pathological interest whose nature is not finally determined. It would appear to be derived from the mucous glands of the bronchi and produces a circumscribed type of tumour which frequently causes early obstruction of a bronchus and haeomoptysis. On rare occasions it is said to produce metastasis but the tendency is to regard it as a tumour of only local malignancy and to be satisfied with a local rather than radical removal.

Treatment

It is generally agreed that the only form of treatment which holds out any hope of success is surgical excision. Considerable use is made of radium therapy, but there are few examples in which the treatment has done more than palliate the symptoms and in spite of new techniques it does not appear that radium therapy is likely to replace surgery. Its future may lie in combination with surgery either as a pre or post operative measure and it clearly has to be considered when surgery is contra indicated.

The regrettable feature of surgery is that it is only applicable to a limited number of patients. The figures for operability given by surgeons bear little relation to the true state of affairs as these are usually taken from a selected group of patients who have been considered fit to be seen by the surgeon. If the total incidence of pulmonary cancer is taken into account it is probable that somewhere between 1/2 and 15 per cent will be accepted as suitable for operation and in only two thirds of these will the growth be capable of removal.

Radiotherapy The original technique in which a heavy direct field was used over the growth has given place to a multiple field technique in which the rays through small ports of entry are directed so as to intersect on the area of the growth and in this way a concentration at the correct site can be achieved without damaging the skin and underlying tissues too seriously. If too heavy a dose of deep X-rays is given a severe form of lung fibrosis results with most distressing dyspnoea. Pneumonitis is not an uncommon sequel but it usually responds to massive chemotherapy.

Radiotherapy is undoubtedly of great value for alleviating pain due to bony invasion or metastasis and it frequently reduces haeomoptysis. On the other hand it cannot be used in the presence of sepsis which is common when a bronchus is obstructed nor can it be used in association with tuberculosis. Some patients tolerate a treatment, given in doses of 200 to 300 r of up to 1,000
the development of a bronchial fistula usually between the tenth and fourteenth day, the contents of the hemithorax are coughed up, and if the fistula persists infection of the empty pleural space will follow. Antibiotics and repeated aspirations sometimes succeed as a method of treatment, but more usually drainage followed by an extensive thoracoplasty is needed to obliterate the infected space and close the fistula. Bronchial fistula is much less common than in the early days of pneumonectomy, but its occurrence serves as a reminder that the technique of bronchial closure is not perfected.

After pneumonectomy the empty space partly fills in with bloody effusion from which fibrin is deposited. This organization of the effusion reduces the volume of the space considerably and is aided by displacement of the mediastinum, elevation of the diaphragm and flattening of the chest wall. Final obliteration of the space occurs within six to nine months of the operation and by this time the mediastinum is considerably drawn over. Some surgeons regard this displacement as a harmful procedure and suggest that a thoracoplasty should be performed to stabilize the upper mediastinum. In this country it is felt that this alteration in the position of the mediastinum is well tolerated and does not require treatment.

The immediate effects of a successful pneumonectomy are surprisingly slight. The average patient who is walking about within a week of operation can leave hospital in two to three weeks and often returns to work in less than the same number of months. Ordinary activities are well tolerated though there is naturally some limitation on heavy exertion. A shopkeeper, a clerk and a professional man will be able to continue with normal work though a labourer might well be advised to find a lighter form of occupation.

Results When it is considered that pneumonectomy is a comparatively recent operation and that the more radical forms of operation have only been practised within the last four or five years, the results are not too disappointing, particularly as early operable cases are the exception rather than the rule. The figures given by Brian Taylor and Waterhouse (1950) are as far a summary as any of current practice. In a series of 1,134 cases collected from a number of British surgeons the operative mortality was 24.3 per cent. 41 per cent survived the operation by more than six months and the five year survival rate was 14 per cent. If the operative mortality group was excluded the average period of survival after operation was twenty months. This contrasts with a four month survival rate in patients who were not submitted to pneumonectomy.
ment is always an unhappy event and many investigations still have to be made to decide whether the patient could support loss of the whole of one lung in some cases with impaired respiratory function a more limited operation may not only be feasible but be the correct and appropriate procedure. Some operations may fail to eradicate the growth and glands but in spite of this they may give good results and above all save the patient from the effects of sepsis and early pressure phenomena.

Radical pneumonectomy consists in removing the whole glandular field with the lung the individual hilar vessels being secured within the pericardium. The dissection will start at the top of the mediastinum and be continued down to the pulmonary ligament to include every gland. At the same time if the lung is adherent to the chest wall an extrapleural dissection will be made.

Dissection and division of the bronchus must in all cases be made so that no pocket or stump is left behind. In other words, the main bronchus is cut so that the lower end is practically flush with the carina. The important subcarinal gland is removed in such a way that the dissection exposes the inner wall of the main bronchus on the opposite side for an inch or so. This may involve considerable retraction of the aorta on the left side. The cut ends of the bronchus are closed by interrupted non-absorbable sutures (seven to ten in number) after it has been ensured that the edges will come together by cutting or removing any unduly rigid cartilage rings. The closure must be airtight and the suture line is reinforced with fascia pleura or adjacent tissue. The use of a pedunculated intercostal muscle graft cut at the time of the incision is valuable in providing a cap of living tissue over the bronchus stump.

When the pulmonary vessels are dealt with the usual course is to open the pericardium and to divide the individual structures within the pericardium starting with the artery. It has however been suggested that manipulation of the lung may lead to a fragment of growth being cast off into the pulmonary vein as an embolus. Division of the vein central to the growth should possibly be the first step in separating the hilar structures. By working within the pericardium an extra centimetre or so of vessels may be available and it is feasible to place a clamp across the auricle at the base of the veins and suture the wall of that chamber. In most cases simple ligature or a transfusion stitch suffices to hold the pulmonary vessels.

The operation is generally withstood satisfactorily though occasional cardiorespiratory failure follows in elderly patients. This is particularly noticeable in patients with previous persistent bronchitis and bronchospasm. The most serious complication is
New Growth of the Trachea

This form of neoplastic disease offers special problems in excision since any excised area involves some reconstruction of the tube. Adenoma and carcinoma are the common forms, Ellman and Whittaker (1947) having collected 120 examples of the latter. Thirty-four instances of sarcoma have also been recorded. The immediate danger of any of these tumors is obstruction and stridor requiring urgent relief as sometimes the first symptom. If not relieved the patient dies from suffocation unless a merciful pneumonia develops.

Excision of the trachea and main bronchus is a practicable proposition if the amount removed is not too large. From cases of ruptured bronchus it has been shown that resection of a short length followed by suture may be quite successful, and this procedure has been used in the case of localized tumors. The difficulty of excising greater
Fig 89

Carcinoma of lung

Oat Cell growth with glandular involvement at the left hilum

Treated by pneumonectomy

Fig 90
DOTT R and HILL A BRADFORD 19 0 Brit Med J n 730
DOTT R and HILL A BRADFORD 19 2 Ibid n 1 71
HILLMAN D and WHITTAKER H 1947 Thorax 2 1 3
GERAULT E W 1941 J Thorac Surg 22 568
HITZEL H and CHERNOY H 19 0 Ibid 19 864
MURGATROYD E 19 2 Ibid 23 164
MASON C A 1949 Lancet n 87
MONOD R CERMAIN A and CALCHY A 1941 Mem lca1 Chir Paris 77 911
PATTON M M McDoNALD J R and MOFERSCH H J 1941 J Thorac Surg 22 83 and 88
PAULSEN D J 1981 Amer J ex Tuberc 64 477
SFLORS T HOLMES 1950 Techniques in British Surgery L 1d R
MAINLOT W B Saunders Philadelphia La
SFLORS T HOLMES and CRICKSHANK I C 1941 Brit J Surg 38 411
SUTHERLAND A W and CRANT I J 1940 Lancet 1 130
TAYLOR A B and WATERHOUSE I A H 1940 Thorax 5 247
TOLOFF A S W NABATOFF R A and NEUMANN H 1930 J Thorac Surg 20 200
areas of bronchus or tracheal wall is that some form of reconstructive repair is necessary if the rigid lumen of the tube is to be maintained. Belsey (1950) after excising a tracheal growth used a stainless steel framework over which was placed a fiscer liga graft and obtained an efficient repair. Free skin or dermal grafts have also been used successfully but in all these cases some bridge of tracheal structure was left after the excision. Removal of a complete section of trachea which leaves a considerable gap offers a problem that has not yet been fully solved. The trachea is normally capable of considerable extension and contraction so that a rigid prosthesis or tube may not be successful though a success has been recorded. The writer using a stainless steel geodesically constructed spiral has had temporary successes but none of long duration.

Palliative measures to prevent suffocation include diathermy and punch excision through a bronchoscope, and temporary relief has been seen following the use of radiotherapy.

References

Introduction

OVRHOLT R H and LANGER L 1949 Technique of Pulmonary Resection Blackwell Oxford

PARKY BROWN A I 1948 Thorax 3 16

SELLORS T HOLMES J Intern Chir 12 1

Pulmonary Tuberculosis

BIRAND V 1930 Mem Acad Chir Paris 76 220

BILKOFORD B J et al 1932 Thorax 7 310

BRANTON O C and RIDGON H J 1930 Dis Chest 18 277

CHAMBERLAIN J M and KLOPSCH R 1930 J Thorac Surg 20 441

DAVIES H M TEMPLE L J and STATTON C 1931 Thorax 6 200

DAN J C et al 1940 J Thorac Surg 20 894

LARK R C and LINDSAY H 1930 Ibid 20 835

LUCAS B G B and CLAND W P 1940 Thorax 5 248

MAHON H W and FORSEE J H 1940 J Thorac Surg 19 724

MEISSNER W A OVRHOLT R H WILSON V J and WALKER J H 1949 Amer Rev Tuberc 60 406

SAROT I 1949 Thorax 4 173

SELLORS T HOLMES 1947 Ibid 2 216

SELLORS T HOLMES and HICKER A H 1949 Ibid 4 82

THOMAS C PRICE 1930 Techniques in British Surgery Ed R Maingot W B Sanders Philadelphia Pa

Suppuration and Growth

AYLETT J A 1951 Thorax 6 230

BELSEY P 1949 Brit J Surg 38 200

BROCK R C 1952 Lung Abscess Blackwell Oxford

BUCHER R M BURNETT W P and ROSEMOND G P 1951 J Thorac Surg 21 572

CHURCHILL E D et al 1950 Ibid 20 349
Mitrval regurgitation
Tricuspid lesions
Aortic stenosis
Aortic incompetence
Aneurysm of the great vessels
Myocardial ischaemia
Congestive heart failure

Experimental

Congenital
- Transposition of great vessels
- Replacement of valves by plastic devices
- Crafting procedures

The established procedures will be considered in more detail and also some of the other methods which hold out some hope for the future.

General Observations

The heart itself tolerates a certain amount of manipulation. As long as it is not displaced from its bed by undue traction or pressure it does not resent touching or even incision though extra systoles or temporary arrhythmias may be observed. Prolonged or rough manipulation will seriously interfere with heart action and produce ventricular fibrillation which is fatal unless promptly remedied, but given gentle handling and periods of rest the heart itself suffers little harm. If in addition drugs, notably those of the procain group are used irritability is reduced and the surgeon's task made more simple. The criteria for cardiac manipulation were clearly laid down by Harken (1946) when he described his wartime experiences in the removal of foreign bodies. In his series there were eleven instances in which he successfully removed a missile from the interior of a chamber of the heart.

Vascularity of the heart muscle and the thinness of the auricles and great vessel walls suggest that any operative approach to the heart should be surveyed with the closest circumspection and only undertaken with the risks clearly envisaged. A divided peripheral artery will jet forth blood but bleeding from a wound in the heart is a flood: the best part of a pint of blood may be lost in a matter of seconds and a dry operating field may be converted into a veritable blood bath. For this reason the use of intracardiac or intravenous transfusions should be borne in mind; they may not be necessary, but they can on occasions be life-saving when the whole attention must be directed in the case of a massive haemorrhage, towards maintaining an adequate coronary and cerebral circulation.
CHAPTER XVIII

SURGERY OF THE HEART

The Scope of Cardiac Surgery

The relief of cardiac compression particularly constrictive pericarditis, has been attempted for a number of years similarly heart wounds have been secured from time to time. Occasionally brilliant essays such as those of Souttar, who dilated a stenosed mitral valve in 1925, and of Tuffier, who dilated an aortic stenosis by invaginating the vessel wall with the finger have been recorded, but the dates from which the present impetus starts can be given as 1939 when Gross ligated a patent ductus arteriosus and 1944 when Blalock and Taussig published their aorto-subclavian operation for pulmonary stenosis. Since that time not only have congenital deformities been treated but acquired heart disease in the form of valvular lesions have come within the sphere of practical surgery. The world literature abounds with experimental work on all aspects of heart disease and isolated instances of success in man are recorded from time to time in new fields.

The lesions for which surgery can be considered may be classified under the headings of those established of undetermined character and of an experimental nature.

Established

Congenital
- Patent ductus arteriosus
- Pulmonary stenosis including Fallot's tetralogy
 - pure pulmonary stenosis
 - truncus arteriosus
 - tricuspid atresia
- Coarctation of the aorta
- Abnormalities of the aortic ring

Acquired
- Injuries to the heart
- Foreign bodies in the heart
- Constrictive pericarditis
- Mitral stenosis
- Aneurysm of some great vessels

Undetermined

Congenital
- Eisenmenger's syndrome
- Patent interatrial septum
- Patent interventricular septum
should be tied snugly, but not so tightly as to cut through com-
paratively soft myocardial fibres. The resultant scar is firm and
does not lead to weakness or cardiac aneurysm.

Manipulation of Great Vessels. In dissecting, one of the main
arteries care has to be taken to avoid tearing off fine branches
which emerge at right angles to the parent stem. Should a short
stump or opening result a large hematoma may develop under the
adventitia which will have to be incised and reflected to expose the
bleeding point. Clamps should not be used to secure this, a fine
arterial suture is required. Veins as well as arteries can be retracted
quite firmly by loop ligatures or tapes but if their walls are incised
even minutely the vessel may split open for some distance when
pulled on.

Ligatures of thread or silk can be used to occlude any vessel up to
20 cm diameter, as in the case of the pulmonary arteries and veins
in a pneumonectomy, but there is an increasing tendency to avoid

![Arterial suture](image)

Fig 93 Arterial suture. Method of obtaining end to end anas-
tomosis with evertting stitches. Note stay sutures.

ligature and to cut off the vessel beyond a control clamp and then
to suture the open end by a fine continuous arterial stitch.

Vascular anastomoses consist in freeing the required vessels over a
sufficient length to allow them to be brought together without undue
tension. This may involve as in the case of resection of an aortic
cocartation a considerable dissection. The adventitia, particularly
of arteries, has to be removed meticulously to prevent buckling of
the vessel on suturing. The actual junctions are made with evertting
stitches usually in short continuous runs of very fine plastic or silk
material (00000) on eyeless needles, each end being secured by an
interrupted stay stitch. Allowance has to be made for the degree
of distension of the anastomosis that occurs when the control
clamps are removed. Over tight sutures may narrow the junction
or even cut through the vessel wall. Stitches too loose will not make
a blood-tight junction. Anastomoses which prove efficient bleed
when the clamps are removed but after two or three minutes stop
as the distending vessels pull up on to the sutures.
Failure to maintain an adequate blood supply to the heart and brain for more than a minute or two may result in irreparable damage. The most specialized brain cells do not tolerate anoxia for more than forty-five to sixty seconds.

Approach to the Heart. Many of the approaches previously described for reaching the heart and pericardium have been abandoned in favor of anterolateral or posterolateral transpleural thoracotomy incisions. If these are sufficiently extensive there is little difference except in the posture of the patient in the degree of exposure. A fourth rib approach gives ready access to the base of the heart and great vessels while a fifth rib exposure is more suitable for the body of the heart. Longitudinal division of the sternum gives access to both sides of the heart and a bilateral intercostal incision with transverse section of the sternum has been used in a few instances to permit an even fuller exposure though this entails opening of both pleural cavities.

Once the lung has been allowed to collapse the pericardium is incised longitudinally and parallel to the phrenic nerve. At the end of the operation the pericardium should be loosely closed leaving gaps that will allow effusion to escape but which will not permit the heart to squeeze through an opening and become strangulated. This is important on the left side.

Wounds of the Heart. Wounds of the heart heal readily with simple suture. Complicated stitches to control any incision into the heart are often less effective than the direct pressure of a finger below which a deep suture can be passed. The type of suture used is not important. Silk or thread is preferable to catgut and it
superior vena cava into the right atrium. It is then advanced through the tricuspid valve into the right ventricle and on through the pulmonary valve into the pulmonary artery. The position of the end of the catheter is controlled by fluoroscopy and pressure readings are taken at various points. In the normal heart, if the catheter is passed further on it will be arrested in a fine branch of the pulmonary artery, and if at this point the catheter is withdrawn very slightly the pressure reading taken at this point is referred to as the so-called pulmonary capillary pressure. At any stage of the catheterization blood samples can be taken in order to measure the oxygen saturation.

Table VIII

Typical Findings by Cardiac Catheterization in Various Forms of Heart Disease

<table>
<thead>
<tr>
<th></th>
<th>Superior Vena Cava</th>
<th>Right Atrium</th>
<th>Right Ventricle</th>
<th>Pulmonary Artery</th>
<th>Præcaval Artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean pressure (mm Hg)</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>120/80</td>
</tr>
<tr>
<td>Oxygen saturation (%)</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>Latent Ductus Arteriosus</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>130/90</td>
</tr>
<tr>
<td>Mean pressure (mm Hg)</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>Oxygen saturation (%)</td>
<td>67</td>
<td>67</td>
<td>83</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>1</td>
<td>0</td>
<td>35</td>
<td></td>
<td>110/70</td>
</tr>
<tr>
<td>Mean pressure (mm Hg)</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Oxygen saturation (%)</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Mitr al Stenosis</td>
<td>3</td>
<td>2</td>
<td>30</td>
<td>40</td>
<td>100/70</td>
</tr>
<tr>
<td>Mean pressure (mm Hg)</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>Oxygen saturation (%)</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>90</td>
</tr>
</tbody>
</table>

* Referred to plane 5 cm below sternal angle

To illustrate some of the values of this procedure one can instance a case in which the passage of a catheter from the right atrium into the right ventricle shows a sudden rise in the oxygen saturation of the blood. This suggests that oxygenated blood has reached the ventricle as would occur when blood is passing from left to right through a patent interventricular septum. Again, if on passing the catheter from the right ventricle into the pulmonary artery there is a sudden fall in pressure the existence of a stenosis would be inferred. On the other hand, if the pressure was suddenly to rise beyond the pulmonary valve and the oxygen saturation to increase the possibility of a patent ductus arteriosus should be considered as vortic blood passes through this fistula into the pulmonary artery. The
Investigations

Routine clinical and radiological investigations suffice for the diagnosis of many patients in whom surgery is contemplated. There is little difficulty in recognizing a patent ductus arteriosus for example, but there may be extreme difficulty in deciding on

![Cardiac catheter in situ](image-url)

the exact anatomical nature of the lesion in a case of congenital cyanotic heart disease. Again mitral stenosis may be easily diagnosed but the extent of the obstruction and the pulmonary pressure cannot be assessed accurately by ordinary clinical methods.

To assist in the solution of these problems two procedures are now available in many cardiac departments—cardiac catheterization and angiocardiography.

Cardiac Catheterization In cardiac catheterization a fine polythene catheter is passed along a vein in the arm through the
equipment. The speed of injection and the rapid exposure of films are essential for a satisfactory result.

There are many points that can only be safely determined by this method. For example, not only can a stenosis be made out, but its site can be identified, dilatations and abnormalities of vessels will be outlined, and if anastomotic operations are in prospect, the length and proximity of the requisite vessels will be seen. Again, if dye appears simultaneously in the aorta and pulmonary artery, the inference is that there is a communication between the right and left heart.

Aortography is based on a similar principle introducing a catheter through a branch of the radial artery near the elbow and passing it against the blood stream through the subclavian artery until it reaches the ascending aorta. The dye is then injected again suddenly, and immediate pictures may reveal the clear outline of some such abnormality as a coarctation of the aorta. The procedure is not without danger unless the position of the catheter is carefully observed. Should it be passed too far and enter one of the openings of the coronary artery, the danger of disaster with the sudden injection is apparent.

TECHNICAL AIDS TO SURGERY

Extracorporeal Circulation. If blood can be deflected from the heart but an active circulation maintained in the brain and heart muscle, there is little reason why the heart chambers should not be opened and an abnormality repaired before restoring the normal circulation. A number of investigators from different countries have devised machines which suck the blood from the patient's circulation oxygenate it fully and pump it back into the arterial system at a reasonable pressure and with a flow of at least 5 litres per minute.

It is probable that permanent damage will occur in the cortical cells of the brain if there is a period of circulatory arrest or complete anoxia for more than one and a half to two minutes. The heart muscle will show electrocardiographic changes (Blesingarth) if deprived of oxygen for more than five minutes. Myocardial anoxia also sensitizes and predisposes the heart to ventricular fibrillation.

The principle underlying the artificial heart lung is to deflect the venous return by sucking the blood out of the vena cavae or right atrium with a catheter after heparinization of the patient's blood. The venous catheters may be introduced through the saphenous vein but are more usually passed through the azygos vein. The
passage of the catheter is not always easy and several manipulations may be required to prevent the catheter sticking in one of the chambers and coiling up.

Angiocardiography (introduced by Castellanos 1937) Angiocardiography affords a visual means of studying the flow of blood through the heart. Fifty to 100 ml of 70 per cent diodone is injected with extreme rapidity into a vein, and this radio opaque block of fluid reaches the heart within a second. If a number of serial radiographs are taken (say eight or ten) within five seconds of the injection the films show the outline of the chambers of the heart and vessels and the order and speed with which they fill. Normally within three seconds the dye will have reached the pulmonary vessels and will be returned to the left heart in five to six seconds. After this though with a less intense shadow the systemic circulation will be visualized.

Special apparatus is required for this technique and the pictures may be taken in whatever plane is considered most suitable.

Simultaneous two plane pictures taken at high speed as practised by Lind und Wegelius are of value, though they require elaborate

by giving the heart a powerful electric shock (2 amp per half second repeated three or four times is an average) between two large electrodes. These electrodes, if shaped like suction cups, can also be used for cardiac massage as suggested by Beck, who has elaborated a technique for resuscitation of cardiac arrest.

The disadvantages of the artificial heartlung are many; the machinery is complicated, it is difficult to avoid gas bubbles which may obstruct the smaller coronary vessels and it is elaborate to set up in a patient with an already defective heart. It has been used in man on a few occasions with limited success.

An extracorporeal unit of animal origin has also been considered. In this blood is pumped through a monkey's lungs which maintain adequate oxygenation, and if immunological reactions can be avoided, this would appear a possible solution. Mustard and Chute (1951) have used this method in babies but without permanent success.

Hypothermia. The hibernating animal associates a very slow heart rate with its depressed metabolism and experiments have been carried out to produce this effect by cooling off the patient. This can be achieved by cooling down the whole body under anaesthesia, using curare or muscle relaxants to avoid shivering. When the body temperature is depressed to 20°C the heart beat is so slow and the circulation so inactive that the heart can be opened and its interior inspected. The operation consists of a right thoracotomy with both veins cavae being occluded while the heart is being operated on. High frequency currents are used to restore the temperature. One successful case is reported by Floyd Lewis who operated on a five-year-old child. The freezing process took two hours; the operation included the heart being opened for over five minutes. Forty minutes were required for the warming process.

This work, which owes much to the original experiments of Bigelow, is being elaborated as a result of animal operations. Cookson, Neptune and Bailey (1952) suggest that depression of the body temperature in man to 20°C might allow both veins cavae to be safely obstructed for a period of nine minutes during which the heart could be incised and a dry field of operation be obtained. Bailey has used this method in transposing the aorta and pulmonary artery in a case of transposition of the great vessels.

Delorme (1952) has worked on cooling blood as it passes through a length of special tubing which connects the femoral artery and vein. The simplicity and efficiency of this method have much to commend it, though it has been difficult to avoid occasional ventricular fibrillation.
blood passes through the oxygenator and is pumped back into arterial catheters which are passed via the subclavian or femoral arteries into the aorta. The incision and exposure demand most careful haemostasis because of heparin. The heart is then mered and a practically dry chamber encountered though one obstructing

Fig 96 Heart lung pump. Blood is sucked out of the right atrium through a catheter and passed through the oxygenating system before being pumped back into the aorta and arch. From this site the pressure is satisfactory and an adequate cerebral and coronary blood supply is maintained. Clotting is prevented by the preliminary use of heparin.

factor will always be the coronary venous return which amounts to the considerable figure of 300 ml per minute. This blood can be collected and returned to the artificial heart. When the heart has been closed it is allowed to take over its own pumping action as the machine is put out of circuit. The action of heparin is countered by protamine sulphate and the blood pressure maintained by adrenaline preparations. Ventricular fibrillation if it occurs can be countered
prevention is better than cure. The most striking feature about cardiac invalidism is that children who have been regarded as serious heart cases with restricted activity for many years will undergo the operation and in a space of a month or so take up normal activities and forget that there has ever been anything wrong with the heart.

Treatment The ductus itself is a short channel, usually about 1 cm in diameter and 10 to 15 cm long. Occasionally it is so short that the aorta and pulmonary arteries are in close contact. The operation consists in occluding the ductus either by ligature, which suffices in the majority of cases, or by division with suture of the cut ends. Though many surgeons are content with multiple ligatures, Cross (1951) has advocated the routine division of the ductus. This is achieved by exposing the ductus thoroughly, reflecting all adventitia and pericardial fringes and then applying four fine clamps. The vessel is divided between the second and third pairs which are then removed and the exposed edges are secured by arterial sutures. The reason for this more complicated and exacting procedure is based on the fear of recanalization which is said to occur in a proportion of cases. In the writer's experience though this complication cannot be excluded it is probably much less common than supposed some of the so-called recanalizations being due to co-existent and unrecognized arteriovenous fistulae which result from infective endocarditis. The average operation is straightforward and is always more easy in children than adults. It is performed through a left postero-lateral thoracotomy, and if there are no complications the child is able to leave hospital in twelve to fourteen days.

Results Among the series that have been published the figures given by Cross and Longino (1951) may be mentioned. In 412 operations there was a mortality of 2.1 per cent, and if the symptom...
If hypothermia can be shown to be safe, it would seem to offer a greater future than the more complex extracorporeal methods. The problems to be solved are the depth at which hypothermia can be maintained and its duration, so that damage to the more specialized type of body cell can be avoided.

CONGENITAL HEART DISEASE

Patent Ductus Arteriosus

In certain individuals the ductus arteriosus remains patent after birth and persists with the result that a certain proportion of the high pressure arterial blood enters the pulmonary system through this channel. Two features follow. The pulmonary artery has to carry more blood than it was designed for and the pulmonary vessels in the lungs are engorged and even show systemic vessel pulsation. The left ventricle has to enlarge to overcome the loss of blood through this arteriovenous fistula, and if this process continues heart failure will ultimately result. The patients are never evanosed except in terminal stages and the activity of the patient is not unduly restricted so long as the left ventricle can compensate for the shunt.

The dangers of the untreated ductus lie in infective endocarditis, heart failure and in the cardiac invalidism that results from the parents and the child realizing that there is something wrong with the heart. This last factor is most important since it interferes with the normal education and social development of the child. During the last few years it is becoming accepted that a patent ductus arteriosus is a surgical condition in which operation is called for unless there are definite contra indications. This attitude has been justified by low mortality of the operation which in several large series is only 1 or 2 per cent and the routinely good results that follow. The policy of most cardiac surgeons is to consider operating on every child from the age of four and five years upwards if the lesion is causing any physical or functional disability. Admittedly patients can live to middle age with a patent ductus and there are instances in which women have borne children in spite of this disability, but in general the heart tends to enlarge rapidly between the age of seventeen and twenty and at the same time atheromatous changes develop in the ductus—a feature that makes surgery much more hazardous. Infective endocarditis, which used to be regarded as one of the strong indications for surgery can often be controlled by antibiotics but here again
The deficient oxygenation in the systemic circuit leads to a compensatory increase in the oxygen-carrying vehicle, hemoglobin, with the result that a polycythemia develops and the red cell count may reach 7 to 10 millions and the hemoglobin content be raised 50 to 100 per cent.

The lesion is a varied one and ranges from a valvular stenosis in which the valve is converted into a cone with a pin-point opening, to all types of narrowing in the infundibular track or main pulmonary arteries. In addition there are further complicated lesions, such

as truncus arteriosus tricuspid atresia and transposition of the great vessels which give the same clinical picture.

Clinically the disease is characterized by intense cyanosis and gross exercise intolerance. The majority of children are born blue or become blue shortly after birth; this persists through infancy into childhood and if untreated many of these sufferers die before reaching adolescence. Survival into young adult life does occur but the patient's ability to lead a normal existence is seriously curtailed. The children are blue in the lips, tongue, ears, cheeks and extremities. The eyes are bloodshot and fingers and toes show
less cases only were considered the mortality was as low as 0.5 per cent

Pulmonary Stenosis

Complete pulmonary stenosis prevents the flow of blood to the lungs and is incompatible with life unless there is some bypass or fistula which lets enough blood into the pulmonary system for oxygenation. Such an escape can be provided by a patent ductus arteriosus but when the stenosis is partial there may be a patent interatrial or interventricular septum which relieves the pressure in the right heart.

The most commonly recognized form of pulmonary stenosis is the tetralogy or tetrad of Fallot in which there is a patent interventricular septum with the aorta overriding this deficiency. The cyanosis that characterizes the condition arises from two factors —

1. The imperfect pulmonary circulation due to a narrowing in some part of the pulmonary outflow tract
2. The aorta receiving venous blood direct from the right ventricle
strated clearly that if there is a pulmonary artery big enough to receive the anastomotic channel from the systemic circulation, that portion of systemic blood which will be then deflected into the lungs will become fully oxygenated.

The original operation consisted of implanting the right subclavian artery into the side of the right pulmonary artery, and the principle of this anastomotic operation, though now frequently practised on the left, has produced many excellent results. It is, admittedly, an indirect operation which adds one more abnormality to the already complicated heart condition but the earlier fears that the opening would narrow or that endocarditis would develop have not been borne out. The tendency at the present time is to operate on the left side where the heart can be exposed and the actual site of stenosis located. Then if an anastomotic operation is to be performed the left subclavian and left pulmonary artery can generally be brought together after some of the proximal branches of the subclavian have been divided.

An alternative procedure only practicable on the left is Potts modification in which an anastomosis is made between the side of the aorta and the left pulmonary artery. This latter operation is made possible by an ingenious clamp which only excludes part of the aortic wall during operation but the size of the opening has to be carefully calculated so as the completed orifice is not more than 4 mm diameter. A larger channel may lead to undue left heart strain and even to failure. The mortality of these procedures varies between 8 and 12 per cent but in all cases where an efficient anastomosis is performed there is some improvement, usually of a remarkable nature.
marked drumstick clubbing. The heart is not necessarily large and any enlargement occurring is confined to the right ventricle. The heart outline takes on a ‘sabot’ shape with the apex tipped counter-clockwise. The pulmonary conus is invisible and there is absence of pulsation of the vessels in the lung fields. On the other hand, the original conception of absent or very small pul

monary vessels has not been borne out. The vessels may be of normal size and indeed the common pulmonary trunk invariably shows a marked post-stenotic dilatation. The important feature is that the blood flow in these channels is reduced to a minimum.

Angiocardiography is frequently employed to detect the type and nature of the heart lesion and in many cases the actual area of stenosis can be visualized.

Treatment The surgical treatment of these patients is based on the brilliant work of Blalock and Helen Taussig (1944) who demon

Fig. 100 Angiocardiography in Fallot’s tetrad. The dye has simultaneously outlined the aortic arch and pulmonary artery stems, implying a free communication between right and left heart circuits. The descending aorta and its branches are filled as well as the branches off the arch of the aorta.
one. Brock has most ably enlarged the scope of the direct operation by removing the infundibular obstruction by means of a punch introduced through the wall of the ventricle. The mechanical advantages of the direct operation are to allow an improved flow into the pulmonary circuit and to prevent a great deal of the deflection into the aorta, but it does not obviate the interventricular defect with the overriding aorta.

In the series that Brock (1952) has published using the direct operation the results have been markedly successful. His figures of 111 cases with a low mortality point to the considerable possibilities of this procedure. Theoretically, the principle of the operation is superior to that of the indirect or anastomotic one, but the risks are probably greater and it is not always easy to assess the internal damage to the heart muscle.

Surgery has undoubtedly been worthwhile in these patients, even though the results are not perfect and the effects may not be permanent. Children almost completely incapacitated are frequently able to resume school life and activities, short of playing games. Young women have borne children since the operation and the relief to the families is one of the most gratifying features.

Coarctation of the Aorta

Coarctation of the aorta which commonly appears as a stricture in the region of the ductus arteriosus was first successfully operated on by Crafoord (1944) and by Gross (1944), the treatment consisting in resecting the narrowed area and performing an end to end anastomosis. There has been a modification suggested by Blalock in which the left subclavian artery is turned down and joined to the descending aorta below the coarctation. The most common type of coarctation occurs at the site mentioned, but other forms are occasionally encountered in which the stenosis occurs on the arch of the aorta and leads to differences in the blood pressures in the arms. The stenosis varies in extent from a sharp short narrowing with a normal sized descending aorta to a much longer form with an atrophic descending artery.

The effect of the coarctation is to produce marked signs of hypertension above the constriction with lowered pressure below. In other words, the blood pressure in the arms will be well above normal, while that in the femoral vessels will be absent or at least greatly reduced. It is this latter that is the important diagnostic feature. Physical signs produced by hypertension may not become apparent until young adult life when headaches throbbing diffi
A direct attack on the stenosis resulted from the successful division of the pulmonary valve by the writer (1947) and by Brock in 1947. In this procedure the valvular stenosis was divided by incising the wall of the right ventricle and passing a valvotome upwards to cut through the stenosis. This type of operation is undoubtedly the correct one for all cases of pure pulmonary stenosis and for many cases of Fallot's tetralogy with valvular obstruction. In other cases the obstruction is located in the infundibular region and indeed may be combined with a valvular
and the original stitch used by Crafoord in which the intima was excluded seems to have been abandoned.

If a careful choice is made the results of operation are excellent, but if the selection is widened to include patients with symptoms or patients approaching their thirtieth year there is a long story of trouble and a number of disasters.

Gross (1950) has recorded 100 patients among whom 11 died. There were an additional 9 in whom exploration only was undertaken but satisfactory results were achieved in 71 instances. Clagett (1951) reported that out of 70 patients with coarctation nothing could be done in 8. The operative mortality in this series was 7 per cent.

Abnormality of the Aortic Ring Abnormalities in the formation
culitures with vision and giddiness are the predominant features. The reason for the hypertension is not only mechanical, it is probably due in part to the reduced blood supply to the kidneys over a period of years. Renal function however may be normal because a large collateral system will have developed in the intercostal and internal mammary vessels to try and connect the circulation above and below the coarctation.

The tortuous and dilated intercostal vessels may produce pressure notching or erosion of the under surfaces of the ribs usually between second and fifth or sixth. About the same time as symptoms occur in early adult life the aorta develops atheromatous changes which influence surgery considerably since sutures may not hold in areas so damaged. In untreated cases death occurs before middle age from cerebral hemorrhage, rupture of the heart or great vessels or some similar catastrophe due to gross hypertension.

Treatment Operative treatment consists in excising the coarctation and restoring the continuity of the aorta by direct end to end sutures or graft. Many of the original surgical attempts were made on people who had symptoms and it has become apparent that many of these had well marked sclerotic changes in the aorta. The difficulties which resulted have led to the view that if operation is to be performed it should be done in early childhood and certainly before eighteen or nineteen years of age. In these cases the tissues are soft, the divided ends of aorta can be mobilized and the sutures hold well. Beyond this age the enormous dilatation of the aorta which brings the subclavian artery practically flush on to the coarctation gives rise to technical difficulties if there is a gap that cannot be easily bridged. One method for dealing with a wide gap has been introduced by Gross (1931) who uses a human aortic graft and this allows restoration of continuity without tension. In a series of nineteen operations there were two deaths. The ultimate fate of the graft is not determined but it has held successfully for at least three years. The use of grafts has increased the scope of treatment since the junction can be effected without tension and is applicable to older patients.

The operation consists of a wide left thoracotomy, a procedure that is extremely bloody, owing to the dilated and tortuous arteries, and then a prolonged and detailed dissection of the coarctation and the aorta either side of it. One or more intercostal arteries may have to be divided. Clamps are applied to the aorta while the coarctation is resected and an end to end junction using an everting stitch is made between the cut ends. A continuous suture interrupted six or seven times during the anastomosis is usually effective.
and the original stitch used by Crasbord in which the intima was excluded seems to have been abandoned.

If a careful choice is made the results of operation are excellent, but if the selection is widened to include patients with symptoms or patients approaching their thirtieth year there is a long story of trouble and a number of disasters.

Cross (1950) has recorded 100 patients among whom 11 died. There were an additional 9 in whom exploration only was undertaken but satisfactory results were achieved in 71 instances. Clagett (1951) reported that out of 70 patients with coarctation nothing could be done in 8. The operative mortality in this series was 7 per cent.

Abnormality of the Aortic Ring

Abnormalities in the formation
ultities with vision and giddiness are the predominant features. The reason for the hypertension is not only mechanical; it is probably due in part to the reduced blood supply to the kidneys over a period of years. Renal function, however, may be normal because a large collateral system will have developed in the intercostal and internal mammary vessels to try and connect the circulation above and below the coarctation.

The tortuous and dilated intercostal vessels may produce pressure notching or erosion of the under surfaces of the ribs, usually between second and fifth or sixth. About the same time as symptoms occur in early adult life the aorta develops atheromatous changes which influence surgery considerably, since sutures may not hold in areas so damaged. In untreated cases death occurs before middle age from cerebral hemorrhage, rupture of the heart or great vessels or some similar catastrophe due to gross hypertension.

Treatment Operative treatment consists in excising the coarctation and restoring the continuity of the aorta by direct end to end sutures or graft. Many of the original surgical attempts were made on people who had symptoms and it has become apparent that many of these had well marked sclerotic changes in the aorta. The difficulties which resulted have led to the view that if operation is to be performed it should be done in early childhood and certainly before eighteen or nineteen years of age. In these cases the tissues are soft and the divided ends of aorta can be mobilized and the sutures hold well. Beyond this age the enormous dilatation of the aorta which brings the subclavian artery practically flush on to the coarctation gives rise to technical difficulties if there is a gap that cannot be easily bridged. One method for dealing with a wide gap has been introduced by Gross (1931) who uses a human aortic graft, and thus allows restoration of continuity without tension. In a series of nineteen operations there were two deaths. The ultimate fate of the graft is not determined but it has held successfully for at least three years. The use of grafts has increased the scope of treatment since the junction can be effected without tension and is applicable to older patients.

The operation consists of a wide left thoracotomy a procedure that is extremely bloody owing to the dilated and tortuous arteries, and then a prolonged and detailed dissection of the coarctation and the aorta either side of it. One or more intercostal arteries may have to be divided. Clamps are applied to the aorta while the coarctation is resected and an end to end junction, using an evertting stitch is made between the cut ends. A continuous suture interrupted six or seven times during the anastomosis is usually effective.
with loss of heart sounds and a radiologically "still" heart with rapidly failing circulation suggests urgent operation. An incision to the left of the mid line with excision of a short length of one of the lower costal cartilages reveals the tense bulging and purple sac. This is incised and the blood gushes forth and the wound in the heart is then exposed controlled by digital pressure and sutured.

If the circumstances are not so urgent, or if the patient has survived the initial injury by some hours aspiration of the pericardium can be undertaken and repeated as often as required. This treatment is based on the assumption that the wound in the heart if not rapidly lethal will seal itself off.

Published experience with heart wounds does not only refer to war injuries but to civil practice where Bigger (1939) collected 141 cases largely from the Southern States of the USA.

Subacute Tamponade. Subacute tamponade due to excessive pericardial fluid usually results from a tuberculous effusion, sometimes on its own or sometimes as part of a polyserositis. With gradual cardiac compression the pulse volume is reduced and on the slightest exertion there is marked tachycardia, at the same time the mobility of the heart to relax fully produces a steadily rising venous pressure. Repeated aspiration is usually sufficient to check the immediate effects of pressure but the site for aspiration is not always made sufficiently clear. Aspiration anteriorly in the intercostal spaces may well puncture the pleura and even lung and the proximity of the descending branch of the left coronary artery on the heart surface should be borne in mind every time the sharp needle point is lying within the pericardium. The presence of the internal mammary artery close to the sternum is another source of danger. The correct site though it is technically more difficult is between the xiphisternum and left costal margin passing the needle obliquely upwards through the muscles but outside the peritoneum to reach the diaphragm. Here the thickness of this muscle can be felt and the needle will enter the pericardium in a safe region. The angle of the needle with the abdominal wall is about 20 degrees and if the operation is likely to be repeated the site of a successful aspiration and depth should be carefully recorded.

Constructive Pericarditis ✓

Chronic compression of the heart is exemplified by constructive pericarditis which almost invariably is the end result of a tuberculous infection of the pericardium. Rheumatic fever never produces this condition and though it may arise as a result of
of the aorta and great vessels though not common are of varied character. The aortic arch may be duplicated, there may be a right sided aortic arch with a left ligamentum arteriosum, the innominate artery may be anomalous with branches crossing to the opposite side and the common carotid and subclavian can take unusual courses. These abnormalities are not important unless they cause pressure and they only produce clinical signs and symptoms if they compress or distort the oesophagus and trachea. Frequently the double aorta or anomalous vessel passes in such a way that this pressure occurs. Gross and Neuhauer (1951) have described forty examples of this type of lesion.

Symptoms may occur in early life or may only develop as years go by. Asthmatic attacks or difficulty in swallowing are common features and radiological and endoscopic investigations may reveal a soft structure or an indentation.

Treatment is only necessary if the symptoms are severe. Some children lose their symptoms as they grow older, but others require attention in view of threatened asphyxia or dysphagia. Angiography may give valuable information as to the side for approaching the mediastinum. When the obstruction has been defined the origin and course of the vessels must be determined. Before the constricting artery is divided it should be temporarily clamped to see if there is an adequate carotid supply. Usually the smaller limb can be severed in the case of a double aortic arch, but the carotid and subclavian vessels may have an anomalous course.

ACQUIRED HEART DISEASE

Cardiac Compression

Acute Tamponade. Acute cardiac compression is most commonly seen with penetrating wounds of the heart. If the flowing blood cannot escape from the pericardium this increasing and enclosed mass hinders the output of the heart. The blood pressure falls and the pulse rate rises until the heart is brought to a standstill or the haemorrhage ceases. This only applies if the pericardium is intact because if the sac is torn the escaping blood passes into the pleural cavity and the signs are those of concealed internal haemorrhage and not of cardiac compression. Fluoroscopy provides a most valuable diagnostic aid in a case with tamponade showing an enlarged rounded and complete immobile heart shadow.

Treatment usually depends on the speed with which surgery can be made available to the patient. A stab wound in the pericardium
even absent. The original description of a small quiet heart is not always accurate since the thickened pericardium may add to the overall diameter of the heart shadow, the loss of movement is the essential feature.

Treatment Medical treatment can do much to stabilize the ill patient, but can do nothing towards permanent cure, which must remain a surgical problem. In the early stages of pericardial involvement, chemotherapy, notably streptomycin, has been held to hasten the process of resolution and to allow earlier operation than would have otherwise been the case. The writer has however failed to find any benefit from this form of treatment. Churchill (1936) and others including the writer, have always felt that the essential defect was failure of the ventricular diastole, a feature described by Richard Lower 300 years ago. The theory that the constriction was based on narrowing of the venae cavae was recently advocated again by Holman (1951) whose work has attracted considerable attention. Against this conception of venous obstruction a number of catheter and angiocardiographic studies have been carried out in which it has been shown that the pressure in both venae cavae atrium and hepatic veins is the same and that the opaque solution shows no obstruction in the course of the great veins. If the theory of failure of ventricular diastole is accepted then the operation must primarily aim at freeing the ventricles. Ideally the whole heart should be freed but this is impracticable at one operation once away from the surface of the ventricles; dissection of a firmly adherent pericardium can become a hazardous undertaking over the thin walls of the atria and great veins.

Earlier operations which aimed at an extrapleural exposure have largely given place to a formal left transpleural approach. Through the anterior or posterior incision the pericardium is exposed after the lung has been allowed to retract and the white thickened membrane of the fused pericardial layers is cautiously incised until the level of the actual heart muscle is reached. This covering is removed over as wide an area as possible taking care to avoid coronary vessels. It is not always practicable to find the correct layer at the first incision and frequently only the parietal layer is excised thinking that the whole pericardium has been removed. No operation is complete if the visceral layer stays behind.

Pericardectomy even if only performed over a small area can give considerable improvement but whereas there is no evidence that the heart muscle itself is diseased the greatest care has to be exercised during the operation since the heart tends to irregularities and sudden arrest. Holman (1951) advocates exposing the heart by
multiple secondary deposits and other rare causes the majority of cases will ultimately reveal evidence of tuberculous origin.

Three types of constriction can be defined —

1. The disease starts as a pericarditis with effusion and as the effusion thickens the parietal and visceral layers of the pericardium become adherent. Then the vigorous and unrelenting contraction of tuberculous scar tissue in the course of time completes the constriction round the heart.

2. This type originates as part of a polyserositis with all the serous cavities being involved. The pericardial involvement is only one factor in the disease process but in time, if the patient does not die from disseminated tuberculosis, pericardial constriction dominates the picture.

3. This group of patients covers those in which the onset of the condition is not recognized and the patient presents the established clinical features of constriction with symptoms that have been present for months or years. Calcification is common in these cases and they are usually diagnosed in middle age and may show cardiac irregularities. The term "stone heart" is not aptly applied to cases in which the calcification is gross.

Andrews Pickering and Sellors (1943) analyzed a series of 37 patients with constractive pericarditis and of these 4 were shown to have originated in acute tuberculous pericarditis, 16 followed a tuberculous polyserositis and 11 presented with the established syndrome. Malignant metastasis accounted for the remainder. The writers could find no evidence that supplicative pericarditis led to constriction.

The clinical features are traditionally divided into three groups —

1. Above the heart the raised venous pressure is observed in the engorged jugular veins which are distended above the normal limits in the neck and associated with slight facial oedema and congestion of the arms.

2. Below the level of the heart ascites and enlargement of the liver are the predominant features; oedema of the legs being less common particularly if the patient has been in bed. In the past many mistaken diagnoses have arisen the ascites being attributed to cirrhosis of the liver but since clinicians have become more aware of the frequency of constractive pericarditis these errors are now less frequent.

3. The final feature concerns the heart itself and though heart sounds may be heard and its beating felt, fluoroscopy and kymography will show that its movement is greatly reduced or
do not function as rigid flaps but loose billowing structures which squeeze together on closing. The chorda tendineae are in two fan-shaped groups arising from the papillary muscles and being attached to the margins of the valve cusps. These may be involved in the rheumatic disease process and become shortened, distorted and even fused while the valve edges become adherent and firmly organized round the margins of the stenotic opening. Calcification may also occur. The orifice as found at operation is remarkably constant in size about 1.0 × 0.5 to 0.75 cm.

Three types of stenosis are commonly encountered —

1. The cusps are lightly fused except at the stenotic opening where there is a thickening at the edges corresponding to the attachments of the most direct and prominent chordae. Involvement and contracture of the chordae is slight and apart from the thickening the commissures are only lightly adherent and can be split easily.

2. Similar to the first group, but with one commissure (or line of valve fusion) and the chordae being so heavily thickened and fibrosed that it cannot be divided. This usually occurs round the posterior commissure.

3. The cusps and chordae are so shortened and contracted that the fused valves are dragged into a funnel shape or "fish mouth opening" which cannot be improved by any mechanical procedure except dilatation. Splitting of the commissures is impracticable and in any case the valve would not move as the chordae are so shortened.

Brock (1952) in an important communication has described the valve orifice as being divided into a flat central blood channel and two more oblique supporting parts. The most important points of attachment of the chordae are regarded as being the primary points of fusion in some cases and are significant in producing a small and constant size of opening if stenosis occurs.

The aim of the operation is to split or divide the fused cusps along the lines of the commissures and if the chordae are undamaged some approach to normal valve action may be achieved. The anterior or aortic cusp must not be injured since this guards the mitral orifice from reflux during ventricular systole. Should mitral stenosis be converted into a gross regurgitation the condition of the patient may be made worse than before the operation.

Hæmodynamics. Many investigations have been carried out to study the hæmodynamics of mitral stenosis. In simple terms the stenosed valve prevents the onflow of an adequate volume of blood into the left ventricle. The output is therefore below normal and
splitting the sternum longitudinally and avoiding entering the pleural cavities. This approach gives a good exposure to the right atrium and vena cava. Pockets of mucous material and calcification may add considerably to the difficulties.

The results of pericardiectomy are gratifying. The operation mortality due largely to cardiac arrest during the induction of anesthesia is appreciable, but the survivors show a reduced venous pressure and are capable of considerable physical activities. Cardiac irregularities tend to persist, but recurrence of the constriction is unknown, though an incomplete initial operation can be improved by a further pericardial excision using another approach.

There are no clear views as to the timing of operation. The pericardium is excised eighteen months to two years after the onset of pericarditis usually comes away cleanly from the heart muscle, but if the operation is performed earlier there is some uncertainty as to the facility with which the visceral layer can be removed.

Mitral Stenosis

Fifty years ago Lauder Brunton suggested that the narrowed mitral orifice might be relieved by direct surgery, but it was not until twenty-five years later that Souttar successfully operated on a patient. The view that the rheumatic affection of the myocardium was more important than the mechanical obstruction unfortunately precluded further progress until the last few years when Bailey and Harken in the United States and Brock in Great Britain showed that surgical treatment was possible.

In addition to a direct attack on the valve, a venous anastomotic procedure has been carried out with some success particularly in cases with repeated attacks of pulmonary oedema. The operation consists in joining a branch of the pulmonary vein (the upper branch of the inferior pulmonary vein) to the vzygous vein. The blood from the congested lung escapes into the systemic vein and relieves some of the pressure in the pulmonary circuit. The anastomosis in these cases does not always remain patent and the value of this operation has been overshadowed by the greater success of valvotomy. Sweet and Bland (1949) have had some success and d'Allamaz (1951) recorded the variable fortunes in sixteen patients.

The direct operation in mitral stenosis consists of an approach through the left atrial appendix which is opened to admit the finger or some instrument with which the narrowed valve is split open. The anatomy of the valve shows that there is a larger and antero-medial leaf and a smaller postero-lateral one. The valves
or aortic cusp balloons into the ventricle like a sail as the valve opens are held in check by the papillary muscles and chordee tendineae which...
Fig. 104. Opening and closure of the mitral valve. The large anterior
On ventricular systole the cusps return and squeeze together; they
are attached at the free edges.
other valves are unaffected. Damage to the heart muscle should be minimal. The patient should be young should have a small heart with normal rhythm should be free of evidence of thrombosis and embolism and above all should have a long interval between rheumatic activity and the time of operation. Nocturnal dyspnea and other evidence of pulmonary hypertension are positive indications for operation when added to progressive disability and loss of exercise tolerance. It is difficult to fulfill these criteria and the patient selected is usually one between the age of twenty to fifty years with emphasis on the thirty to forty year group. The heart is often enlarged and of an irregular rhythm and a history of pulmonary or cerebral embolism are among the direct indications for valvotomy. Most patients operated on have had attacks of pulmonary edema and many suffer from recurrent hemoptyses.

The average case submitted for assessment may seem unsuitable on first sight but after a prolonged period of bed rest and medical treatment with a low salt diet and digitalis when necessary, the tendency to congestive heart failure is diminished and a severely disabled patient may finally become a reasonable subject for operation.

Operative Treatment The operation consists in a left thoracotomy. The pericardium is then freely opened to reveal an enlarged left atrial appendix. The pulmonary artery is much bigger and more tense than normal and also are the pulmonary veins. If there is no clot in the appendix a clamp is applied to its base and the tip or side is incised so as to permit entry of the right index finger. The use of control sutures being optional. The finger is then passed into the atrium as the clamp is released. The edges of the incision fitting firmly enough round the finger to prevent blood loss.
the aorta remains small which is consistent with the thin and rather underdeveloped condition of the patient. Behind the stenosis there is an enlarged and sometimes enormous atrium from which the pressure is referred back on to the pulmonary veins and thence through the capillary bed to the pulmonary arteries and right ventricle. The pressure in the pulmonary artery steadily rises as the disease progresses and hypertrophy of the right ventricle results. This pulmonary hypertension is exaggerated on exercise and may reach a figure of over 100 mm Hg. If this persists for any length of time, secondary changes will develop in the small vessels of the lung and lead to permanent pulmonary hypertension. Sudden peaks of pulmonary hypertension associated with instability of the veins and left auricle to carry off the blood flow contribute to attacks of pulmonary oedema. Progressive enlargement of the right ventricle will ultimately lead to congestive heart failure.

Catheter studies play a considerable part in assessing the severity of the disorder. The tip of the catheter measuring the pressure within the right ventricle, pulmonary artery and pulmonary capillary bed. The presence of unduly raised figures confirms the severity of the stenosis and the necessity for operation, but there is no guarantee that satisfactory valvotomy will lower the pulmonary pressure to its normal level. In any case the postoperative readings should not be taken for at least six months after valvotomy. Even then it may be found that in some cases the figures will have fallen appreciably, while in others where the clinical result is good there has been little lowering in the pulmonary artery pressure. Indeed, one of the remarkable features is the unpredictable effect of valvotomy. Sometimes a slight enlargement of the orifice gives a good clinical result, whereas in others where the valve action is almost reconstituted, the effect is far less dramatic. Surgeons operating on these patients have noted a remarkable constancy in the size of the stenotic opening. As has been stated, it measures about 1.0 by 0.5 cm and this would appear to be the critical size compatible with life. If a slight increase is made in the size of the orifice it may temporarily allow an adequate blood flow or such an improved flow that relieves many symptoms. Ideally a full sized opening with mobile valve flaps should be aimed at, but this is not always possible and the surgeon who is dissatisfied with the mechanical side of the valvotomy may be pleasantly surprised with the clinical result.

Selection The selection of patients suitable for this operation is far from easy. The operation ideally should be performed on patients in whom the mitral stenosis is the dominant factor and
other valves are unaffected. Damage to the heart muscle should be minimal. The patient should be young, should have a small heart with normal rhythm, should be free of evidence of thrombosis and embolism and above all should have a long interval between rheumatic activity and the time of operation. Nocturnal dyspnoea and other evidence of pulmonary hypertension are positive indications for operation when added to progressive disability and loss of exercise tolerance. It is difficult to fulfil these criteria and the patient selected is usually one between the age of twenty to fifty years with emphasis on the thirty to forty year group, the heart is often enlarged and of an irregular rhythm, and a history of pulmonary or cerebral embolism are among the direct indications for valvotomy. Most patients operated on have had attacks of pulmonary oedema and many suffer from recurrent hemoptyses.

The average case submitted for assessment may seem unsuitable on first sight but after a prolonged period of bed rest and medical treatment with a low salt diet and digitalis when necessary the tendency to congestive heart failure is diminished and a severely disabled patient may finally become a reasonable subject for operation.

Operative Treatment. The operation consists in a left thoracotomy. The pericardium is then freely opened to reveal an enlarged left atrial appendix. The pulmonary artery is much bigger and more tense than normal as also are the pulmonary veins. If there is no clot in the appendix a clamp is applied to its base and the tip or side is incised so as to permit entry of the right index finger. The use of control sutures is optional. The finger is then passed into the atrium as the clamp is released the edges of the incision fitting firmly enough around the finger to prevent blood loss.
The finger tip feels for the roughened edges of the stenosed opening and using a forceps considerable pressure the commissures are split in a postero medial and an antero lateral direction out to the valve ring. If the structures are too tough or firm to be torn, a knife-like instrument attached to the finger can be used to make a preliminary incision. The operation is not one of dilatation but of splitting or tearing, avoiding damage to the anterior leaf. The finger should not obstruct the blood flow for more than two or three beats at a time. On completion, the finger is withdrawn as the clamp is reapplied and the incision closed by simple suture.

If the atrial appendix is too small to admit the finger or if it is the site of a heavy thrombosis, access to the valve may be gained through the dilated pulmonary vein trunk, or even through incision in the atrial wall.

The risk of blood loss is obvious should the opening into the thin walled atrium split or tear but it is unusual for a hemorrhage to be uncontrollable if care is taken. The response of the heart to the actual manipulation can be grotesque with periods of arrest, tachycardia and ectopic beats, but if the handling is gentle and procaim is used to reduce myocardial irritability, the situation should be easily controlled.

The postoperative course is usually straightforward so long as the lung is fully and promptly expanded. Occasionally, ordinary sinus rhythm is converted into auricular fibrillation if there is any pulmonary collapse or access of fluid within the pericardium or pleura. Once the obstruction is relieved the patient feels a sense of freedom characterized principally by loss of tightness in the chest and within some days the shortness of breath is obviously relieved and patients may even be able to sleep lying flat.

Results: The results are gratifying. The mortality in the larger published series of cases varies between 6 and 11 per cent. It has been noticed that with increased experience and selection, the mortality tends to fall. Logan and Turner (1953) report 100 cases with an operative mortality of 7 per cent and with good results in more than two thirds. Baker, Brock and Campbell (1952) with an experience of 100 patients describe carefully the indications and selection of patients. There were 13 deaths shortly after operation, and in a follow-up of 50 patients, the results six months after valvotomy showed 33 very satisfactory results with less good function on 9 occasions. The writer in 125 operations has had 4 deaths and good early results in many cases.

Cerebral embolism is the biggest cause of disaster apart from an occasional catastrophe on the operating table. This complication
Fig 106 Mitral stenosis before and after valvotomy. The typical mitral shaped heart is accompanied by marked congestion of the lung fields.

Fig 107 Mitral stenosis before and after valvotomy. After operation the lung fields are clear.
is regarded as so serious by Bailey and others that they temporarily occlude the innominate and left common carotid arteries during the intracardiac manipulation, so that any dislodged embolus will not have access to the brain. A torn anterior cusp will lead to severe regurgitation, which cannot be compensated.

The symptomatic relief in a successful case is dramatic and bedridden patients can become ambulatory within a week or two. The average disabled case who could only just walk about slowly is often able to return to housework, shopping or a reasonable degree of activity and the question of recurrence of the stenosis, though not answered finally would appear to depend on the quiescence of the rheumatic process. Experimental evidence suggests that any raw surface within the heart will become rapidly endothelialized possibly within two or three days if the valve flaps are moving freely and do not show raw surfaces it would seem that the chance of their secondary adherence is small but this is a point that time alone will determine.

The psychological or functional element in mitral disease is important. Unnecessary invalidism is common and an operation even though not successful may give improvement which cannot entirely be attributed to the mechanical benefit. Preliminary medical treatment and the psychological relief may have played a large part in the good result of some operations. Per contra a good mechanical result may not be associated with the degree of progress expected if the patient cannot relieve herself from cardiac invalidism.

One important aspect of mitral disease is the volume of work that may result if the early successes of valvotomy are maintained. Paul Wood has estimated that within the age group of twenty to forty there are 150,000 cases in this country of rheumatic heart disease with mitral stenosis as a prominent feature and he suggests that possibly half these will require valvotomy sooner or later. This estimate may be on the high side, but it is a factor which needs consideration.

Mitral regurgitation has been treated by threading a length of living tissue loosely across the deficiency so that the strip sags into the ventricle during auricular systole but obstructs it when the ventricle contracts. If the graft can be hooked or sewn to the edge of the anterior cusp it can be used to tighten the valve and reduce the opening. Gordon Murray (1950) has used a vein turned inside out threaded over the palmaris longus tendon and Bailey (1951) uses a pedicled tube of pericardium sutured so that the serous edges are outwards. He reports 7 cases with improvement in all but 1.
The strip is passed into one side of the auricle and out the other with a finger introduced through the appendix guiding the passage through the left auricle. Logan (1952) has recently recorded 11 cases with good results in most cases. Brock's view in regarding regurgitation as a severe form of destructive valvitis suggests that mitral incompetence which is producing symptoms apart from any coexistent stenosis may be very difficult to treat.

Aortic incompetence is treated on the same principle as above a loose strip being threaded through the aortic wall well above the valve. A preliminary report has recently been made concerning the insertion of a plastic non-return valve into the aorta above the defective valve with a gratifying early result.

Aortic stenosis affords a more difficult problem than mitral stenosis because of the anatomy of the aortic valve and its pathological distortion. Bailey (1952) showed how the valve can be incised and dilated by instruments introduced through the left ventricle and also used a retrograde method in which a dilator is passed downwards through the right common carotid or right subclavian arteries into the ascending aorta and thence to the stenosis. These operations are not without danger and if the valve ring is disrupted the coronary vessel supply may be jeopardized, and at the same time incompetence results. Dilatation or incision of the anterior cusp would seem to be the safest procedure. Brock (1950) has approached the valve through a cardioscope introduced from above. Some of the results can be regarded as satisfactory but the pathological changes in the valve make the possibilities of surgery much smaller than with mitral stenosis.

Patent interatrial defects have been closed by invaginating the atrial appendix into the auricle itself and securing it to the edges of the septum by sutures. This is only practicable if the opening has a lower edge but again following the principle of mitral surgery a finger introduced into the auricle assists the manipulation considerably. A well consisting of a rubber funnel sutured to the opened atrial appendix has been used by Gross (1972). The depth of the well prevents the blood from escaping and the surgical manipulations are carried out by finger and instrument through the funnel. Plastic plates or sheets have been sutured into the defect to help in its closure.

Patent interventricular defects have been treated by Murray (1948) by threading strips of fascia lata on blue silk across the ventricle walls. The procedure could not be used if the lesion was complicated by other defects as tetralogy, and on the whole the future of operative effect in
may have to await developments of heart-lung machines or hypothermia

Myocardial Ischaemia

Coronary artery disease remains one of the greatest challenges to medical science. In England and Wales the Registrar General's Report gives a figure of 36,640 deaths due to this cause in 1948. The figure was 15,400 in 1938. The diminishing blood supply ultimately leads to death of the heart muscle, and the life of the patient largely depends on the extent of this infarction. Moreover, there is the probability that in the course of time further damage will follow and kill the patient.

Beck (1943) has introduced the idea of a "trigger" mechanism by which a small amount of ischaemia added to a muscle already deprived of its full blood supply precipitates the full disaster of infarction. If *per contra* a small additional blood supply can be provided the tragedy may be postponed and many types of operation have been introduced to try and provide a supplementary blood supply to the myocardium to prevent immediate necrosis or to reduce the risk of further episodes. Grafts applied to the heart have been used in a variety of forms but the success of these has been limited and attention has turned to trying to convert coronary veins into arterial channels.

Myocardial Grafting The original work on grafting was carried out a number of years ago by Beck (1938) and by O'Shaughnessy (1937) the former using muscle and the latter omentum and lung. For muscle grafting an anterior approach was used and after the heart surface was exposed intercostal muscle bundles and pectoral muscle was applied to the scarified heart to which they became adherent. O'Shaughnessy's omental graft consisted in bringing omentum into the chest through the diaphragm and applying it to the lateral aspect of the bare heart and whereas the original results seemed satisfactory the operation did not have popular support. Recently Mason (1951) has produced results which suggest further consideration of this method is indicated. In a series of 30 operations many results were regarded as giving satisfactory improvement. If died shortly after intervention but the patients selected were regarded as cardiac derelicts.

A more simple type of graft comes from use of the parietal pericardium itself. Pericardial adhesions are known to bleed freely from the heart end after they are divided and their artificial production has been advocated by using asbestos powder tile or bone dust (King 1941). The advantages of this type of procedure is that
the operation is a small and simple one, exposing the pericardium through a limited incision and injecting the foreign material. Firm adhesions are produced but the functional results are not entirely satisfactory. Thompson and Raisbeck (1949) claim that adhesions produced by the introduction of talc powder gave improvement in 70 per cent out of thirty-six patients; there were six deaths.

A more recent innovation is the use of a blood vessel implanted into the heart muscle. The internal mammary artery is freed from its branches and the divided distal end is buried for a centimetre or two in the myocardium. Vineburg (1951) has carried out this operation on five occasions. Experimental work suggests that in this as in other grafting operations, blood vessels bud out from the graft into the heart muscle and provide some additional blood supply.

The critics of grafting infer that any new blood vessels only supply a local superficial area and do not penetrate into the deeper layers of the heart muscle which are functionally more important. Also in assessing the results of these operations it is difficult to discount the beneficial effects of prolonged medical treatment and rest which are inevitably a preliminary to surgery. In spite of a number of successes from all these different methods, grafting does not seem to have given a satisfactory answer to the problem.

Coronary Vein Operations. The left coronary artery is the vessel of supply for the left ventricle which returns about half its flow into the coronary sinus. This contrasts with the right coronary vessels whose venous return is largely into the Thebesian system. There are also communications with the heart chambers by sinus-like spaces and the capillaries connect freely with arteries, veins and these spaces. It is therefore possible that blood can flow from one part of the coronary system to another. On this general basis two surgical procedures have been considered—obstruction of the coronary sinus and arterIALIZATION of the coronary veins.

If the coronary sinus is ligated the venous return from the myocardium will be obstructed and the vessels engorged. The veins and capillaries are dilated and more blood than normal is retained in the heart muscle. In this way it is thought possible that potentially ischaemic areas will not be drained so quickly. On the other hand, Blalock (1950) has pointed out that complete obstruction of the sinus may lead to gross congestion of the deeper layers of the muscle with petechial hemorrhages in the endocardium. As a result experiments aiming at partial obstruction of the venous return have been regarded as more satisfactory. Fauteux (1951)
has combined coronary sinus occlusion with periaorterstral stripping of the main coronary arteries, with the object of combining dilatation with venous congestion. He performed this operation seventy eight times with sixteen deaths and good results are claimed in patients between thirty six and fifty two years of age. Beck (1951) who has worked for years with the problem has recently devised a complicated and ingenious procedure which aims at partial arterialization of the venous channels. An anastomotic channel is constructed between the aorta and the coronary sinus using a free vein graft (taken from the arm) to bridge the short gap between these structures. The vein graft is sutured to the side of the aorta with a 4 mm opening and then implanted into the coronary sinus. If the force of this shunt is too great for the heart veins to support, the opening on the heart side is reduced at a later operation by closing the coronary vein to 3 or 4 mm. The initial successes of this procedure suggest that it gives as yet the greatest promise of hope in this vast problem.

Gordon Murray (1950) has stressed the danger of paradoxical systole of an infarcted area of myocardium. The ischaemic muscle is flaccid and when the ventricle contracts this area distends passively causing considerable loss in the ventricular output. In experimental animals he used excision and suture of the area to improve this deficiency and more recently Allen (1951) has shown that splinting the infarcted surface improves the cardiac function.

Symptomatic Relief. The relief of the pain of angina pectoris has received considerable attention and detailed studies of the apparent nerve pathway here led to the supposition that the inferior
cervical and upper five thoracic ganglia are the areas through which pain fibres pass. Alcohol injection if accurately placed, gives relief of pain in a proportion of cases but the procedure is not without risk. Open operation has considerable advantages, and in expert hands can be safely and accurately performed through an anterior or posterior incision. The anterior approach in the base of the neck follows the lines of a phrenic nerve operation but the scalenus anticus muscle is divided to expose the sympathetic chain whose lower ganglia are reached by retraction of the apex of the pleural cavity forwards. The posterior approach is a more extensive operation but the lower ganglia are more readily exposed and the anatomy of the sympathetic chain more easily defined. In any case the operation must be carried out on both sides but in spite of the clamps made for the success of sympathectomy the operation is not widely used.

Congestive heart failure has been treated successfully on occasions by ligation of the inferior vena cava. It is held that the exclusion of a considerable volume of blood from the right heart reduces the load on the heart and leads to considerable alleviation of symptoms. Severe congestion of the lower extremities follows the ligature, but this subsides slowly.

The inferior vena cava is approached from an oblique incision in the loin. The operation is popular in Latin America, and from France d Allanes and his colleagues (1950) report 39 successes in a series of 55 cases.

Aneurysms

Intrathoracic aneurysms have been treated by a variety of methods over a number of years. Gordon Taylor (1950) has recorded the collected adventures of surgeons with innominate aneurysm where ligation was the mainstay of treatment. Wiring of aortic aneurysm by Colis's method has received impetus from Griffin and Borrie's (1950) figures in which there were good results in 6 cases with one death in nine operations. This method is suitable for saccular aneurysms adherent to the chest wall. The more elaborate electrocoagulation methods of Blakemore (1948) have had some success in promoting clotting within the sac particularly if combined with constriction above and below the aneurysm with polythene tape. The use of cellophane strips encircling the aneurysm was advocated by Harrison and Chandy in 1943. This material produces gradual fibrosis but the operation which entails a preliminary freeing of the aneurysm is not without hazard if it is adherent to intrathoracic structures. Cellophane wrapping is
1 to 109 Aortic aneurysm Large and immobile mass arising from the right mediastinum with elevated diaphragm due to phrenic paralysis

Fig 110 Aortic aneurysm Cardioangiography in the oblique view shows the mass to be a saccular aneurysm of the ascending aorta. This was treated by injection of Coilia wires
indicated in the case of fusiform aneurysms and the most suitable site is according to Poppe the descending aorta.

A more radical and potentially more successful method of treat

Fig 112 Excision of aneurysm with restoration of continuity with a free arterial graft.

Fig 111 Treatment of saccular aneurysm adherent to the chest wall by Colt's wire umbrella or wisp.

Fig 113 Partial excision of a saccular aneurysm and repair by suture.

Figs 111-113 Aneurysm:

ment may well develop from the use of arterial grafts. These are undoubtedly superior to plastic forms of vascular protheses and appear to survive without degeneration. They can be stored safely under special conditions in a "deep freeze" for twenty-five days. The area of the aneurysm can be by passed even if the sac is not excised but in most cases it is possible to remove or obliterate the
The use of short length grafts in treating coarctation has been established by Gross (1951) and the treatment of aneurysms is an elaboration of this principle involving longer lengths of grafts. Lam (1950), Swan (1950) and Brock (1953) have all published successful cases.

References

General

Bigger T A 1938 J Thorac Surg 8 239
Callaghan J C and Bigelow W G 1951 Ann Surg 134 8
Harrren N D L 1946 J Thorac Surg 15 31
Kay J H 1951 Surg Gyn Obst 93 682
King C S J 1941 Surgery of the Heart, Arnold, London
Wilkinson R S and Logan W A 1949 Harlem Hosp Bull 49, 91

Hypothermia and Artificial Heart-Lung

Beck C S and Rand H J 1949 J Amer Med Ass 141, 1230
Bigelow W G, Lindsay W K and Greenwood W F 1950 Ibid 132 849
Bjork O 1948 Acta Chir Scand 96 suppl
Boekema I et al 1951 Arch Chir Neerl 3 25
Cookson R A Neptune W B and Bailey C P 1952 Dis Chest 22 240
Delorme E J 1972 Lancet ii 914
Dennis C et al 1965 Ann Surg 134 709
Jongbloed J 1949 Surg Gyn Obst 89 684
Mustard W T and Crute W T 1961 Surgery 30 684
Stokes T L and Gibson J H 1950 Surg Gyn Obst 91 138

Pericardium

Burwell C S and Blalock A 1938 J Amer Med Ass 110 265
Churchill J D 1929 Arch Surg 19 147
Churchill L D 1949 J Thorac Surg 18 650
Eerlund L D 1949 Arch Chir Neerl 1 6
Evans W and Jackson F 1962 Brit Heart J 14 53
Havener G 1931 Arch Kin Chir 266 691
Holman E 1931 Am J Col Surg 3 195
Selkirk T Holmes 1946 Brit J Surg 33 215

Congenital Heart Disease

Patent Ductus

Gross R E 1939 Ann Surg 110 321
Gross R E and Longino L A 1931 Circulation 3 125
Jones J C 1947 Ann Surg 130 174
Sandblom P and Erkstrom G 1951 Acta Chir Scand 102 167
Scott H W 1956 Surg Gyn Obst 90 91
Pulmonary Stenosis

BLALOCK A and LETT 19.3 Ann Surg 132 483
BLALOCK A and TALSSM II 1943 J Amer Med Ass 128 189
BROOK R C 1949 Brit Med J ii 799
BROOK R C 1952 Ann Surg 136 63
BROOK R C and CAMPBELL M 1950 Brit Heart J 12 377 407
FININGER C R and GIBSON S 19.1 Pediatrics 7 341
FININGER C R GIBSON S and POTTS w J 19.1 Amer J Dis Child 81 46
LUTTS W J 19.1 Ann Surg 130 342
SULLIVAN T HOLLIS 1948 Lancet i 988
SULLIVAN T HOLLIS and BELCHER J P 19.3 ibid ii 887

Coronary

CLAGETT O T and JAMPOLIS R W 19.1 Arch Surg 63 337
CRAFOORD D C 1944 Acta Chir Scand 91 97
CROSS R E 19.0 Circulation 1 41
CROSS R E 19.3 Ann Surg 134 763
SANTY T et al 19.3 Lyons Chir 46 513 and 649

Misc Congenital

BLALOCK A and HANLON C R 19.0 Surg Gun Obst 90 1
FESTRON G and SANDBLOM P 1961 Acta Chir Scand 102 183
GROSS R E and VELHAUSSEN E B D 19.1 Pediatrics 7 69
GROSS R E et al 1952 New Eng J Med 247 413
KITTIS J D and FOSTY C C 19.3 J Pediat 38 172
MURRAY GORDON 1948 Ann Surg 128 843

Valvular Heart Disease

BAILEY C P 1949 Dis Chest 15 377
BAILEY C P GLOVER R P and O'NEILL T J E 19.0 J Thorac Surg 19 16
BAILEY C P et al 1950 Ibid 20 516
BAILEY C P et al 1961 Dis Chest 19 125
BAKER C BROOK R C and CAMPBELL M 1950 Brit Med J i 1283
BAKER C et al 1952 Ibid 1 1043
BROOK R C 1950 Guy's Hosp Rep 99 236
D ALLAINES F and DURJE C 1951 J Chir Paris 67 389
GLOVER R P O'NEILL T J E and BAILEY C P 19.0 Circulation 1 329
HARKEN N D E et al 1950 J Thorac Surg 19 1
LOGAN A and TURNER R 1952 Lancet ii 593
LOGAN A and TURNER R 1953 Ibid iii 1018 and 10.7
MURRAY GORDON 1950 Arch Surg 61 903
O'NEILL T J E GLOVER R P and BAILEY C P 19.1 J Amer Med Ass 147 1032
SMITH H G BOONE J A and STALWORTH J M 19.0 Surg Gun Obst 90 157
SWIFT R H and BLAND E F 1949 Ann Surg 130 384

Coronary Disease and Congestive Failure

ALBAN.ES A R et al 1949 Presse med Argent 36 1378
ALLEN D S 19.1 J Thorac Surg 22 609
BEE R C S 1949 Surgery 26 82
DONZELLO L D ALLAINES F et al 19.0 Sem Hop Paris 26 2310
Aneurysm

Blakemore A H 1961 Ann Surg 133 337
Borrie J and Griffin S G 1950 Thorax 5 290
Gordon Taylor G 1950 Brit J Surg 37 377
Harrison F W and Chandy J 1943 Ann Surg 118 478
Lam C R and Aram H H 1961 Ibid 134 745
Monod O and MAYER A 1950 Circulation 1 220
Poppé J A 1948 Amer Heart J 36 252
Swan H et al 1950 Arch Surg, 61, 732
PART IV—THE GENITO-URINARY SYSTEM

R H O B ROBINSON

INTRODUCTION

Recent advances in genito-urinary surgery have widened the field of conservative surgery and stressed the importance of early diagnosis. Many conditions which in the past led to irreparable damage can now be nipped in the bud. Infections of the urinary tract demand thorough investigation which often leads to the discovery of some unsuspected abnormality, the correction of which is essential for permanent eradication of the infection. The appropriate sulphonamide and antibiotics are bactericidal to all the common infecting organisms although some of them, such as pseudomonas procyanes and bacillus proteus are difficult to destroy.

The prognosis in genito-urinary tuberculosis has been improved by the use of streptomycin and para-aminosalicylic acid as adjuvants to surgery, and in certain cases their use has avoided the necessity for surgical interference. Isonicotinic hydrazide (isonazid) has not yet been adequately assessed.

The recurrence rate in nephrolithiasis can be lowered by resection of the stone-bearing area in the affected kidney, and phosphatic stones can sometimes be dissolved by the use of a buffered citrate solution. It is possible that hyaluronidase may prove of value in producing the resolution of stones or preventing their formation.

Exact diagnosis of renal lesions has been rendered easier by aortography, which outlines the vascular pattern of the kidney and perirenal oxygen insufflation which gives a clear outline of its exact shape. Both these methods can be combined with simultaneous pyelography. In some cases the differential diagnosis of tumour and cyst of the kidney can only be arrived at in this way, but both methods should only be used if the diagnosis cannot be arrived at by simpler means.

Certain cases of albuminuria or oliguria will occur in which the correction of the chemistry of the blood and the use of dialysis by various methods, including the artificial kidney may tide the patient over a critical period. Lower nephron nephrosis tends to recovery
DONIZELLO E et al 1951 Arch mal Cœur 44, 239
FAUTEUX, M 1951 Ibid 44 673
GLENN T and BEAL J M 1950 Surgery 27, 841
JOHNS T N P, SANFORD M C and BLALOCK A 1950 Bull Johns Hopk HOSP 37 1
MCAusTHER I F, LEICHTMANN D and BECK C S 1951 Ann Surg 133 153
MASON C A 1950 Lancet 1 309
O'SHAUGHNESSY I 1936 Brit J Surg 23 665
SFRANZINI M et al 1951 Chirurgia 6 117
THOMPSON S A and RAISBECK M J 1949 Ann Intern Med 31, 1010
VINEBROG A and MILLER G 1951 Canad med Ass J 64 204

Aneurysm
BLARKMORE A H 1951 Ann Surg 133 317
BORBIE J and GRIFFIN S G 1950 Thorax 5 290
CORDON TAYLOR G 1950 Brit J Surg 37 377
HARRISON P W and CHANDA J 1943 Ann Surg 118 478
LAM C R and ARAM H H 1941 Ibid 134 742
MONOD O and MGYER A 1950 Circulation 1 220
POPEK J A 1948 Amer Heart J 36 252
SWAN H et al 1950 Arch Surg 61 732
CHAPTER XIX

OPERATIONS ON THE KIDNEY

Position of the Patient It is essential to have a modern type of operating table in order to obtain good access. A table which breaks in the middle allowing the legs and the thorax to be lowered, thus opening up the costovertebral angle when the patient is in the lateral position gives better access than is given by a bridge or kidney pillow under the loin. Rotation of the trunk is controlled by suitable supports for the pelvis and chest.

Surgical Approach to the Kidney In the past several factors have militated against direct and adequate approach to the kidney, in particular the fear of sepsis and the fear of opening the pleura with resultant collapse of the lung. Modern anesthesia and the use of antibiotics when necessary have made these fears negligible. At the present time some surgeons have even suggested routine abdomino-thoracic approach to the kidney, having been impressed with the value of this approach in the surgery of war. This approach excellent as it is, should be reserved however for those cases in which it is essential owing to the large size or abnormal situation of the mass to be removed. The classical lumbar approach gives poor access to the upper pole of the kidney and adrenal, particularly on the left side.

Approach through the Bed of the Twelfth Rib An incision 5 to 6 inches in length is made over the long axis of the rib having first of all carefully checked its presence and length in an X-ray photograph. A previous preliminary pyelogram gives exact information as to its relation to the kidney. The incision is carried down to the rib which is resected subperiostally. The lower edge of the pleura can be seen in the posterolateral superior end of the wound and avoided. The bed of the rib is incised between the eleventh and twelfth thoracic neurovascular bundles. The incision is carried forwards for a short distance through the muscles of the flank. The false capsule is now exposed and incised giving direct access to the kidney.

Fey's Approach This is somewhat similar, but is made through the bed of the eleventh rib and is more traumatic being virtually a thoraco-abdominal approach. Fey admits that in many cases
provided the patient can be kept alive until tubular regeneration takes place.

Many ingenious operations have been devised to create an alternative urinary reservoir in place of the bladder, the problem being to create a reservoir from which there will be no reabsorption of urinary waste products and which will not transmit infecting organisms or back pressure to the kidneys. In cases where the bladder is too small efforts have been made to enlarge it by submucous grafting and where it is too large to reduce it by removing large parts of the fundus. Both these conceptions may overlook the fact that the bladder is only of value if its function is unimpaired. The treatment of carcinoma of the bladder still constitutes a baffling problem in the correct choice of the methods to be used in any particular case.

There is still no agreement on the best method for removing the enlarged prostate although there is much better appreciation of the factors which make for safety and success whatever particular operation is carried out.

The use of cortisone can prevent the formation of dense fibrous tissue after operation for urethral stricture and plastic operation may relieve the patient of the necessity for repeated dilatation.
CHAPTER XIX

OPERATIONS ON THE KIDNEY

Position of the Patient It is essential to have a modern type of operating table in order to obtain good access. A table which breaks in the middle allowing the legs and the thorax to be lowered thus opening up the costovertebral angle when the patient is in the lateral position gives better access than is given by a bridge or kidney pillow under the loin. Rotation of the trunk is controlled by suitable supports for the pelvis and chest.

Surgical Approach to the Kidney In the past several factors have militated against direct and adequate approach to the kidney in particular the fear of sepsis and the fear of opening the pleura with resultant collapse of the lung. Modern anesthesia and the use of antibiotics when necessary have made these fears negligible. At the present time some surgeons have even suggested routine abdovino thoraco approach to the kidney having been impressed with the value of this approach in the surgery of war. This approach excellent as it is should be reserved however for those cases in which it is essential owing to the large size or abnormal situation of the mass to be removed. The classical lumbar approach gives poor access to the upper pole of the kidney and adrenal particularly on the left side.

Approach through the Bed of the Twelfth Rib An incision 5 to 6 inches in length is made over the long axis of the rib having first of all carefully checked its presence and length in an X-ray photograph. A previous preliminary pyelogram gives exact information as to its relation to the kidney. The incision is carried down to the rib which is resected subperiosteally. The lower edge of the pleura can be seen in the postero-superior end of the wound and avoided. The bed of the rib is mised between the eleventh and twelfth thoracic neurovascular bundles. The incision is carried forwards for a short distance through the muscles of the flank. The false capsule is now exposed and mised giving direct access to the kidney.

Fey’s Approach This is somewhat similar, but is made through the bed of the eleventh rib and is more traumatic being virtually a thoraco-abdominal approach. Fey admits that in many cases
the pleura is unavoidably opened, and this would appear to be undesirable in a routine procedure. The incision is an angled one the tip of the eleventh rib forming the apex of the two halves of the incision. The costal limb follows the upper border of the eleventh rib. The abdominal limb runs downwards and forwards to the iliac crest. The external and internal oblique muscles are divided in the line of the incision. The eleventh rib is stripped of periosteum and its connection to the diaphragm at its tip is divided. The eleventh rib is retracted downwards like a lever and the tenth interspace opened up. The incision is completed by dividing the transversus muscle, when the perirenal fatty capsule is in full view.

OPERATIONS FOR HYDRONEPHROSIS

It is now generally agreed that in the pelvic type of idiopathic hydronephrosis lower polar vessels are seldom the actual cause of the condition but rather an exaggerating factor of a developmental error shown by abnormal renal pattern or multiple blood vessels. The wisdom of division of lower polar vessels is questionable as it leads to atrophy of the part of the kidney which they supply. The problem has been neatly solved by H. Hamilton Stewart who has elaborated an operation in which the renal vessels are approximated so that the renal pelvis cannot be snared between two vascular bundles.

Any operation to relieve obstructive hydronephrosis ideally should avoid opening the urinary tract as it is virtually impossible to open and drain any part of the urinary tract without producing transitory infection. Plastic procedures combined with temporary nephrostomy have this defect.

Hamilton Stewart’s Operation Any of the recognized lumbar incisions may be used. The exposure of the kidney is followed by a dissection displaying the aberrant artery and the uretero pelvic junction. Usually as a result of this dissection the tense hydronephrotic sac can be emptied down the ureter by compression but if necessary the sac can be aspirated with a long fine needle introduced into the pelvis through renal tissue. The lower polar vessels (artery and vein) should be freed from the sheet of connective tissue in which they lie so that they can easily be raised to a higher level. The testicular or ovarian vein may need division on the left side. The pelvis should now be dissected free on its inner aspect from the same sheet of connective tissue as above so that the pelvis now becomes free and is in a suitable condition for pllication if this proves necessary later. The capsule is reflected from the front of the upper
and lower poles of the kidney and is left attached at the convex free border. The kidney is grasped in both hands and the upper and lower poles are approximated. The anterior surfaces of the stripped upper and lower poles are now brought together so that the
Kidney resembles a ball in shape. 4/0 plain catgut sutures are now placed through the upper and lower poles to be tied later. Hardened catgut tape is now threaded along the new convex border of the refashioned kidney, resembling the rim round a wheel. The tape must be quite flat and is fixed with sutures at the front. The plain catgut sutures previously inserted are now tied tightly. The two pieces of reflected capsule are brought together and sutured.

The kidney is maintained in its new position by the hoop of catgut tape the sutures opposing the anterior poles and the overhanging and suturing of the capsule separated from the two poles. If necessary, the renal pelvis is reduced in size by plecation at the front and back by interrupted ten day 6/0 catgut sutures which do not penetrate the lumen. No attempt is made to fix the kidney.

The results over a period of ten years are good. The moulding of the kidney carries the lower polar vessel upwards into close relationship with the main renal artery, thus re-establishing the anatomical relationships of infancy. The pelvis and ureter are not opened at any time and the arterial supply of the kidney is not interfered with (Fig 114).

Anderson's Plastic Operation. An anterior incision is used with the patient in the supine position tilted slightly to the opposite side. The incision commences at the tip of the twelfth rib posteriorly and is carried forwards obliquely to the outer edge of the rectus sheath. The kidney is exposed extraperitoneally. The uretero pelvic junction and upper redundant part of the renal pelvis are resected. Anatomical relationships are maintained by a silk stay suture in the upper ureter. The method of anastomosis employed dispenses with splinting and eliminates the risk of stricture formation at the site of anastomosis. A pelvic flap is turned down from the lower part of the pelvis. The upper two thirds of the opening thus created in the renal pelvis are closed by a continuous 4/0 plain catgut suture taking all the coats. The upper end of the ureter is slit downwards for a distance of 2.5 to 3 cm and its edges are anastomosed to the edges of the aperture in the lower third of the kidney pelvis and to the edges of the pelvic flap by a continuous plain 4/0 catgut suture taking all coats (Fig 115).

The fact that the lower part of the renal pelvis is turned down as a flap ensures that the pelvis is drained at its most dependent part. The method also ensures that the new pelvis, which consists of the pelvic flap and the upper slit portion of the ureter, drains into a ureter which has scar tissue at only one point of the circumference and which is not encircled by a circumferential scar. Subsequent contraction of the anastomotic scar cannot cause stenosis of the
lumen of the ureter at (b) in Fig. 115b and thus interfere with drainage of the pelvis. Stenosis and stricture formation are inevitable if the ureter is cut straight across and anastomosed directly to a small aperture of similar size in the renal pelvis (Fig. 115d).

There is no splitting of the anastomosis by an indwelling catheter which is against all the principles of plastic procedure as it leads to infection and fibrosis at the line of suture and subsequent stricture. Temporary nephrostomy is unnecessary.

Renal Sympathectomy This operation is indicated for the relief of pain due to neuromuscular dysfunction of the calyces and renal pelvis or sympatheticstonus as described by S. H. and R. C. S. Harris in 1930 and stressed by Oldham. Hydronephrosis may be well marked on intravenous pyelography and there may be definite delay in emptying of the renal pelvis after retrograde pyelography and yet on exposure of the kidney there may be no evidence of hydronephrosis or mechanical obstruction. The operation is most satisfactory for the relief of pain but its effects on the abolition of the functional hydronephrosis are more doubtful. Sympathectomy must be very thorough as it has been pointed out by Mitchell that
kidney resembles a ball in shape. 4/0 plain catgut sutures are now placed through the upper and lower poles to be tied later. Hardened catgut tape is now threaded along the new convex border of the refashioned kidney resembling the rim round a wheel. The tape must lie quite flat and is fixed with sutures at the front. The plain catgut sutures previously inserted are now tied tightly. The two pieces of reflected capsule are brought together and sutured.

The kidney is maintained in its new position by the hoop of catgut tape. The sutures opposing the interior poles and the over lapping and suturing of the capsule separated from the two poles. If necessary, the renal pelvis is reduced in size by plication at the front and back by interrupted ten day 6/0 catgut sutures which do not penetrate the lumen. No attempt is made to fix the kidney.

The results over a period of ten years are good. The moulding of the kidney carries the lower polar vessel upwards into close relationship with the main renal artery. Thus re-establishing the anatomical relationships of infancy. The pelvis and ureter are not opened at any time and the arterial supply of the kidney is not interfered with (Fig. 114).

Anderson's Plastic Operation. An anterior incision is used with the patient in the supine position tilted slightly to the opposite side. The incision commences at the tip of the twelfth rib posteriorly and is carried forwards obliquely to the outer edge of the rectus sheath. The kidney is exposed extraperitoneally. The ureteropelvic junction and upper redundant part of the renal pelvis are resected. Anatomical relationships are maintained by a silk stay suture in the upper ureter. The method of anastomosis employed dispenses with suturing and eliminates the risk of stenosis at the site of anastomosis. A pelvic flap is turned down from the lower part of the pelvis. The upper two thirds of the opening thus created in the renal pelvis are closed by a continuous 4/0 plain catgut suture taking all the coats. The upper end of the ureter is slit downwards for a distance of 2.5 to 3 cm and its edges are anastomosed to the edges of the aperture in the lower third of the kidney pelvis and to the edges of the pelvic flap by a continuous plain 4/0 catgut suture taking all coats (Fig. 115).

The fact that the lower part of the renal pelvis is turned down as a flap ensures that the pelvis is drained at its most dependent part. The method also ensures that the new pelvis which consists of the pelvic flap and the upper slit portion of the ureter drains into a ureter which has scar tissue at only one point of the circumference and which is not eneuclered by a circumferential scar. Subsequent contraction of the anastomotic scar cannot cause stenosis of the
stance or by the index fingers of the assistant's clasped hands. In the latter case the fingers are so held that they act as a clamp. The application of a clamp to the renal pedicle although facilitating the operation may well cause damage to the vessels and in a large series post operative thrombosis may occur in some of the cases.

A wedge resection is carried out after the metal or finger clamp has been applied. The apex of the V as a rule lies along a line extending across the kidneys from the top of the convex lower border of the pelvis. This line usually passes at right angles to the long axis of the central portion of the kidneys, but may vary slightly according to the calyceal anatomy and if one of the middle calyces has also to be included in the resection. The aim should be to cut through the lowest major calyx as it joins with the pelvis. The kidney flaps should be about 1 inch in length. The main vessels are controlled by figure of eight stitches of 4/0 plain catgut. The clamp is released from time to time to show the position of the main vessels. Stones are removed from the pelvis by an incision carried medially from the opening of the major calyx along the under surface of the pelvis. The resected wedge of tissue is examined to see if all the stones shown in the X-ray are present. If not the renal pelvis and the upper end of the ureter are explored. X-rays are now taken of the kidney, small films being placed in direct contact with the kidney and the absence of stones verified. Any clot is removed from the pelvis. If an incision has been made in the pelvis, it is

![Diagram of nephrectomy](https://via.placeholder.com/150)

116 Lateral nephrectomy - Resection of lower pole

By courtesy of Mr. H.H. Stewart and the Editor: *Annals of the Royal College of Surgeons*
sympathetic filaments enter the kidney over a wide area and not only along the renal artery or arteries. There does not appear to be any valid argument for decapsulation at the same time. The kidney is exposed freely and all perinephric adhesions divided. All the renal vessels are stripped carefully working from the aorta towards the hilum of the kidney. The renal pelvis and the upper inch of the ureter are also stripped thoroughly of all connective tissue. Oldham has suggested painting the arteries with 10 per cent phenol as an added help. At the conclusion nephropexy may be indicated.

The operation has the merit alluded to earlier of avoiding opening the urinary tract or draining it temporarily. It can of course be combined with a plastic procedure when on exposure of the kidney organic obstruction or a gross hydronephrotic sac are found.

PARTIAL NEPHRECTOMY

The introduction of chemotherapy and antibiotics have made conservative surgery of the kidney a practical proposition in cases where the kidney is known to be infected before operation. Reactions and secondary hemorrhage are always dreaded complications but now with careful surgery seldom occur. An individual can maintain health with a third of the normal amount of functioning renal tissue, and therefore thorough eradication of a diseased area of kidney is possible without jeopardizing health.

The operation of partial nephrectomy which incidentally does not embrace heminephrectomy for double kidney is indicated particularly in certain cases of calculus disease. It has also been advocated by Semb for the treatment of certain cases of renal tuberculosis.

Hamilton Stewart has reported on 101 personal cases of partial nephrectomy for renal calculus. He points out that the published recurrence rate after operations for renal calculi is from 15 to 30 per cent. Exirpation of the diseased calyx usually the lowest in which the stone or stones form should materially reduce this high percentage of recurrences. In Stewart's series stones were present in the lowest calyx in 75 per cent. The recurrence rate was 6.8 per cent in all cases, infected and non-infected. The exact localization of calculi is determined by pre-operative X-ray photographs and if infection is present suitable antibiotic therapy commenced a few hours before operation. After free exposure of the kidney and the area to be resected, usually the lower pole hemostatic control is obtained by the use of a kidney clamp which grips the kidney sub
stance or by the index fingers of the assistant’s clamped hands. In the latter case the fingers are so held that they act as a clamp. The application of a clamp to the renal pedicle, although facilitating the operation, may well cause damage to the vessels and in a large series postoperative thrombosis may occur in some of the cases.

A wedge resection is carried out after the metal or finger clamp has been applied. The apex of the V as a rule lies along a line extending across the kidney from the top of the convex lower border of the pelvis. This line usually passes at right angles to the long axis of the central portion of the kidney, but may vary slightly according to the caliceal anatomy and if one of the middle calyces has also to be included in the resection. The aim should be to cut through the lowest major calyx as it joins with the pelvis. The kidney flaps should be about 1 inch in length. The main vessels are controlled by figure of eight stitches of 4/0 plain catgut. The clamp is released from time to time to show the position of the main vessels. Stones are removed from the pelvis by an incision carried medially from the opening of the major calyx along the under surface of the pelvis. The resected wedge of tissue is examined to see if all the stones shown in the X-ray are present. If not, the renal pelvis and the upper end of the ureter are explored. X-rays are now taken of the kidney, small films being placed in direct contact with the kidney and the absence of stones verified. Any clot is removed from the pelvis. If an incision has been made in the pelvis, it is
now closed with a fine continuous stitch of 4/0 plain catgut threaded on a fine round bodied half circle needle. The stitch is continued along the apex of the V of the section and the opening of the major calyx thus closed. If the pelvis has not been opened the continuous suture is made along the apex of the section only. The flaps of kidney tissue are now brought together by 4/0 catgut sutures threaded on a round bodied intestinal half circle needle No 6. These are placed $\frac{1}{2}$ inch apart and the same distance from the cut edge. The sutures are passed immediately deep to the continuous suture along the apex of the section. This procedure ensures obliteration of any dead space at the apex of the section and a good hold for the sutures. Great care should be taken to avoid damage to the flaps and the sutures must be carefully placed to avoid interfering with the blood supply. The assistant by compression, brings the flaps together and the stitches are tied sufficiently tightly and no more to hold the flaps together. Haemostasis is now complete. The capsule must not be closed, it being important that any blood which oozes from the cut surfaces shall escape into the perirenal space and thence to the exterior. The kidney is then replaced in the top of the renal space and a bed is made by dissection. The kidney is retained in this high position by suturing together the anterior and posterior layers of the renal fascia below it to act as a sling (Fig. 116).

A dram is inserted below the closed renal fascia and retained in position for five days. A Foley's catheter is inserted into the bladder for twenty four hours to render obvious any haemorrhage. If the urine is still infected appropriate treatment is undertaken to eradicate the infection.

References

Kidney Operation

ROBINSON R H O B 1947 Proc R Soc Med 40 201
SAMES C P 1950 Lancet 3 363

Hydronephrosis

ANDERSON J C and HANES W 1949 Brit J Urol 21 209
STEWART H HAMILTON 1947 Brit J Surg 35 51

Partial Nephrectomy

SENB C 1909 Acta Chir Scand 98 457
STEWART H HAMILTON 1932 Annals RCS 2 32
CHAPTER XX

THE BLADDER AND PROSTATE

CARCINOMA OF THE BLADDER

The treatment of carcinoma of the bladder has evolved along lines familiar in other parts of the body, but is influenced by two local factors—namely, the fact that radical surgery demands some alternative disposal of the urine secreted by the kidneys and the fact that bladder tumours are to a varying degree radiosensitive.

The published results of radical surgery have proved disappointing, many cases not being diagnosed and subjected to treatment until the disease had penetrated the muscle coats and glandular metastases have occurred. Earlier diagnosis is essential and radical surgery is indicated where there are multiple bulky non-penetrating tumours and where there are solitary penetrating tumours which have not progressed to the stage of fixation to the walls of the pelvis. It must be remembered, as pointed out by Masana, that in many cases of apparently solitary tumour widespread malignant mucosal changes are present in other parts of the bladder.

One stage cystectomy and transplantation of the ureters is the operation of choice as it is technically easier to carry out a radical operation for carcinoma in this manner.

The bugbear of total cystectomy at the present time is that the immediate operative risks are not excessive, thanks to modern anaesthesia, blood transfusion and antibiotics, is the remote complication of abnormal renal function. Ferris and Odel, in 1950, drew attention to the occurrence of hyperchloremic acidosis in 80 per cent of patients who have been subjected to bilateral ureterocoelectomy.

Once the possibility of its onset is realized, routine investigation will disclose the changes that have occurred in the blood urea, alkaline reserve and blood chloride. Treatment consists in the administration of alkalies and in a low salt diet. Paradoxically, the patient must be encouraged to empty the bowel at frequent intervals to reduce reabsorption from it.

In many cases palliative total cystectomy is well worth while undertaken to spare the patient the agonies of repeated strangury and the ill effects of haemorrhage.
It is doubtful whether drastic extirpation of all the pelvic contents and the establishment of a wet colostomy as advocated by Brunswig is ever justifiable as a treatment for carcinoma of the bladder.

The actual technique of the ureterosigmoid anastomosis does not seem to influence the immediate and remote results but whatever technique may be used it is essential to avoid undue stripping of the ureter and undue compression if it is buried in a tunnel in the bowel wall.

Alternatively, however, the results of treatment by radiotherapy are encouraging particularly now that newer techniques are available. Intracavitary radiation with isotopes is indicated when surface lesions with little tendency to penetrate the bladder muscle are present. Radioactive cobalt is technically easier to apply and offers less risk of contamination than the liquid isotope bromine.

Topical treatment by open cystostomy, diathermy destruction of the superficial part of the tumour and implantation of its base with radon seeds combined if necessary with transplantation of the ureter into a different part of the bladder has given encouraging results. The practical difficulty is to obtain adequate spacing of the seeds and as a result correct dosage. Radioactive tantalum wire offers an alternative method which overcomes the risk of uneven radiation.

Teletherapy with high power deep X-ray avoids the necessity for opening the bladder with inevitable secondary infection and possible persistent fistula. With multiple points of entry, all effects of surface radiation can be avoided and the maximum dose delivered to the tumour.

BENIGN ENLARGEMENT OF THE PROSTATE

The treatment of prostatic obstruction due to benign senile changes in the gland still gives rise to controversy and the searcher after truth may be confused by the assurance and conviction of the advocates of widely differing methods.

Certain basic principles are agreed and no one method of treatment can ever overcome all the hazards and difficulties or be equally applicable in every case.

In the first place, the operation must have a mortality because we are dealing with an age group in which there is an appreciable natural mortality apart from any incidental operative interference. Further, a hard core of derelicts in whom renal damage has progressed to such an extent as to make recovery impossible will always remain. Therefore, such mortality figures as those of Gershom Thompson,
Wells and Millin are very creditable and approaching the attainable limit. Obviously the proportion of bad risk cases in various clinics differs considerably and must influence mortality figures quite apart from the skill of individual surgeons.

The ideals to be aimed at in any operation on the benign prostate are as follows:

(a) All adenomatous tissue should be removed without damage or removal of any normal prostatic tissue. The suprapubic approach is the best in this respect, but any of the recognized methods carefully carried out are satisfactory.

(b) The adenomatous tissue should be removed without dividing or damaging any other tissue during the exposure of the gland. Only the transurethral approach can fulfill this particular condition and the hazard to be avoided is damage to the urethra by excessive dilatation and prolonged manipulation.

(c) The bladder should not be opened or disturbed, and again the transurethral approach is the ideal but the retropubic and perineal approach also fulfill this requirement. Suprapubic prostatectomy with immediate closure does not and may be followed by leakage and temporary interference with bladder function.

(d) The limits of the prostatic cavity should be preserved although it is surprising what liberties can be taken and yet lead to a good functional result. The retropubic approach had the disadvantage of destroying temporarily the very dense layer in front of the prostate which binds the bladder to the pelvic floor and affords the fixed point against which enucleation of the prostate is begun in the suprapubic approach. The only appreciable false capsule of the prostate is this dense layer on the anterior surface of the gland and it is composed of the capsule reinforced by the pubo-prostatic ligaments and the anterior fibers of the levatores ani. This fact is not as well appreciated as it should be nor is the fact that the capsule at the sides and posteriorly is of nothing like the same strength. The two layers of the fascia of Denonvilliers situated posteriorly and so important in perineal prostatectomy, are thin and afford little support.

(e) The urethra should be preserved inviolate. Over dilatation rough manipulation and infection must be avoided. The distal portion of the urethra is known to harbour organisms in increasing frequency as the mentum is approached and therefore Wilson Hoy's insistence on the avoidance of all instrumentation and the downward passage of the drainage tube from the bladder to the exterior is ideal. In fact, if proper methods of catheter drainage are carried out, this point is not of great practical significance.
(f) Primary haemorrhage should be controlled absolutely. This factor is the major problem of prostatic surgery, as from it stem a formidable array of disasters. The most important are clot retention with reflex renal failure, profound circulatory changes with renal failure, and the much increased risk of superadded sepsis. Difficulty in control of the primary haemorrhage arises from difficulty of access to and visualization of the bleeding points. The situation is not so serious if the blood can escape without entering the bladder and producing clot retention. The retropubic approach gives the most definite control of bleeding during the course of the operation and any extravasated blood tends to escape by the extravesical drain.

(g) Early ambulation is highly desirable. Old men do not react well to confinement in bed. Closed prostatectomy is the object to be aimed at and the transurethral approach is the least incapacitating.

(h) Infection should be avoided. It is true that in some cases the bladder is infected already but in the majority the operation should be an exercise in aseptic surgery and post operative infection due to inadequate management of catheters and mechanisms of drainage should be prevented.

Transurethral Prostatectomy

The writer has no doubt that this operation if carried out with the cold punch is the best. The procedure has been brought to a high level of efficiency by Gershom Thompson and his followers and one wonders why it is not used more generally. The probable reason is that the technique is an exacting one to acquire, requires a high degree of teamwork and close supervision and is impracticable in many cases because of local difficulties of administration.

It is impossible in this work to give a detailed description of the operation but at the present time Thompson emphasizes the following points in technique. The 27F punch should be used and seldom if ever the 30F. This avoids overstretching the urethra with resultant urethral stricture. Any narrowing of the urethra assessed by pre-operative calibration can be corrected by internal urethrotomy in preference to the alternative method of introducing the punch through a perineal urethrostomy in the bulbous urethra. In order to obtain accurate visualization with the smaller instrument he has replaced the plain glass window at the end of the instrument with a 2.5 dioptre lens. The operation is carried out under spinal anaesthesia with careful control of the blood pressure. Thompson uses water as the irrigating fluid and has not found it necessary to use glycine or glucose to avoid appreciable haemolysis with the risk
of the crush syndrome kidney. Continuous post-operative irrigation of the bladder through a two-way Foley catheter is used. Foley catheters with various lengths of no. 14 are desirable. Extreme care is taken not to resect at the absolute 12 o'clock position at which point prostatic tissue is negligible and the prostatic plexus of veins and peri-prostatic cellular tissues are easily opened. Haemorrhage which is extremely difficult to control may result from this error and extravasation of blood and urine occur. Hamilton Stewart makes a point of introducing a small drain in the cave of Retzious to guard against this eventuality. The lower portions of the lateral lobes of the prostate are pushed into the field of operation by an assistant's finger introduced into the rectum during the concluding phases. The outflow top of the punch is attached to continuous suction to provide efficient emptying from the bladder of clots and pieces of resected prostate thus doing away with the need for an evacuating syringe.

The cold punch operation is in effect a variety of prostatectomy and not merely a palliative for the object is removal of all adenomatous tissue by cutting with a tubular knife individual bleeding points being controlled by diathermy coagulation. Resection operations carried out with an electro-resectoscope are seldom removals of the prostate in the same sense and it is not accurate to consider them as alternative methods of performing the same operation. Obviously the larger the adenomatous mass to be removed the more difficult the operation becomes in the sense that time is a limiting factor. All the adenomatous tissue must be removed and the operation must not extend beyond an hour. It is for this reason that most surgeons have to adopt other forms of prostatectomy when dealing with the grosser examples of prostatic enlargement.

Retropubic Prostatectomy

This was introduced by Millin in 1915 as he felt dissatisfied with the results of electro-resection and various types of suprapubic operation.

The advantages of the operation are that it is a closed operation and the bladder as a functioning unit is not interfered with in any way. Visualization of the operation site compares favourably with that obtained in other operations. Control of primary hemorrhage is more definite and removal of the adenomatous tissue can be assured. For obstructive lesions of small size it is not ideal, and it is not always easy to define the correct layer in enucleating adenoma. Should the operation be complicated by sepsis, either pre
or post operative considerable time may elapse before this can be eradicated finally as the prostatic cavity resulting from the operation takes a long time to heal.

Technique: Preliminary cystoscopy is essential to establish the exact extent of the enlargement and to exclude any associated lesion in the bladder. A transverse incision 4 inches in length is made in the skin crease 1 inch above the upper border of the symphysis pubis. The rectus sheath is divided in the line of the incision and two aponeurotic flaps are dissected one upwards for 1 1/2 inches and one down to the upper limit of the symphysis. This dissection exposes the rectus muscles and the pyramidalis if present. These are separated in the midline. The transversalis fascia is divided in front of the lower part of the bladder and the peritoneum is pushed upwards exposing the bladder. Miller's self-retaining retractor is placed in the wound to separate the muscles while the third blade depresses the empty bladder and renders the bladder neck tense. Two gauze packs are placed in the lateral recess on each side of the prostatic capsule defining it accurately. The tributaries of the dorsal vein of the penis lying in the fat anterior to the capsule are secured and coagulated and the fat pushed aside by blunt dissection. Vessels in the front of the capsule are sealed by diathermy coagulation. A transverse incision is now made over the right lateral lobe of the gland midway between the bladder neck above and the apex of the gland below. This is deepened through the capsule until the adenoma is seen Adequate suction is essential to remove the blood oozing is free at this stage. Using long scissors curved on the flat, the lower capsule flap is undermined and seized with T-shaped capsule forceps. A similar capsular incision is made over the left lateral lobe linking up with that over the right the lower leaf undermined and held by a second T-shaped capsule forceps. The upper flap is drawn upwards by a toothed forceps exposing the adenomatous mass. A stay suture is passed through the edge of each capsular flap using a boomerang needle knotted and held in hemostats. Elevating the lower capsular flap the lower limits of the lateral lobes are defined freed by means of the long scissors and the urethra then divided with scissors at the apex of the prostate. The lateral recess packs and the retractor are now removed. Elevating the lower capsular flap by means of the stay suture the surgeon insinuates the index finger between this structure and the adenomatous mass. Enucleation proceeds from below upwards. The mass remains attached at the neck of the bladder from which it is dissected away. The adenomatous mass having been removed a temporary pack is placed in the prostatic cavity and the self
Prostatectomy

The pack is removed and the prostatic cavity inspected for any bleeding points or residual adenomata. The cavity should be left perfectly smooth. The posterior lip of the vesical outlet is now grasped and a wedge excised to prevent subsequent obstruction. A suitable sized (15-22F) catheter is now passed and will usually enter the bladder without difficulty, but may have to be guided through the vesical neck. The transverse capsular incision is now closed with a continuous suture of No. 1 chromic catgut introduced with a boomerang needle. The suprapubic space is swabbed free of clots and a drain left down to the suture line. The wound is now closed in layers and the catheter irrigated until the efflux is clear. Four ounces of lotion, preferably 3.8 per cent sodium citrate, are introduced and the catheter sutured. Bilateral vasectomy is carried out. One hour later the suture is removed and the catheter allowed to drain continuously. Irrigation is only employed if drainage appears to be impeded and is carried out with strict aseptic technique. The catheter is removed on the third day and the patient allowed out of bed. If there is any urinary leakage, the catheter is reinserted for a few days. The operation is usually conducted under an umbrella of sulphonamide and an antibiotic.

The number of vessels encountered and the amount of haemorrhage vary considerably and if necessary an intravenous drip transfusion should be set up. If performed under anaesthesia with hexamethonium bromide the operation can be carried out with a minimal loss of blood. The transverse approach which incidentally can be utilized for many other operations on the bladder or prostate has the distinct advantage that it enables the patient to cough without discomfort or the risk of developing an incisional hernia. Millin's self-retaining retractor functions far more satisfactorily when a transverse incision is used.

Suprapubic Prostatectomy with Closure

The latest modification of this operation is that described by Wells and is developed from that advocated by Wilson Hey. Hey made the important observation that it is sepsis that kills the patient, and that sepsis is introduced by instrumentation. He therefore vetoes any preliminary catheterization or cystoscopy. An assessment of renal function and the amount of residual urine is carried out by means of intravenous pyelography. Wells tempers on this point and is prepared to cystoscope the patient if the diagnosis is in doubt. The important point is that if cystoscopy is
carried out it should be followed immediately by aseptic prostatec
tomy when this is indicated

The operation is carried out under spinal anesthesia which Wells considers essential in order to deal with the problem of hemorrhage during the course of the operation. Blood pressure is maintained at a constant level by a saline intravenous drip con-
taining noradrenaline.

A midline suprapubic incision is made. The bladder is opened and the prostate and ureteric orifices visualized. A Tiemann's No. 6 catheter is passed down the urethra from the bladder and out of the meatus. The tissue to be removed is now outlined by making a diathermy incision round the vesical aspect of the prostate. The anterior and lower parts of the lateral lobes are now enucleated with the finger after which they are grasped with Duval forceps and held up enabling the urethra to be divided proximal to the verumontanum with the diathermy needle. The enucleation of the lateral lobes is now completed and two cuts made with the diathermy needle in the rim of the prostatic cavity at three and nine o'clock—internal sphincterotomy. These cuts divide the muscle of the internal sphincter and enable the whole cavity to be seen plainly and bleeding vessels to be sealed with diathermy. The search for bleeding vessels is continued until the cavity is dry and this may occupy only five minutes or as long as twenty minutes. A 21F catheter is now attached to the bladder end of the indwelling Tiemann catheter and pulled down through the urethra. The prostatic cavity is packed with two pieces of Gelfoam soaked in thrombin placed in apposition with the side walls and held in position with a pack of oxyceel gauze. The catheter is retained in position by a nylon suture through its tip brought up through the bladder and abdominal wall and fixed externally. The bladder is closed in two layers and the abdominal wall closed leaving a drain in the cavity of Retzius. The vasa are tied. The catheter is irrigated with citrate solution, 3 oz. being left in situ and the catheter then spigotted.

Post operative Care. The urethral catheter remains spigotted for forty-five minutes. The bladder is then emptied and washed out three or four times with 5 per cent citrate solution. Three ounces of citrate are then introduced and the catheter spigotted again. This procedure is repeated three or four times at intervals of forty-five minutes until the effluent is free from clots. The catheter is then connected up with sterile tubing to a receiver at the side of the bed. Normally it is removed on the fifth day. In old or feeble patients with bladder atony, or in cases of urinary leakage from the wound, however, the catheter is retained for a longer period.
up to a maximum of three weeks. The operation is carried out under an umbrella of penicillin and sulphathiazol which are stopped on the fifth day when the catheter is removed. After this medication of the urine is produced with acrid sodium phosphate. The patient is allowed out of bed on the day after the operation.

Retention Complicating Prostatic Enlargement

It is now realized that the most important factor in the management of acute retention due to prostatic enlargement is the avoidance of sepsis and Wilson Halv was the first to advocate immediate aseptic prostatectomy without any preliminary catheterization in all cases. He pointed out that the obstructed kidneys is peculiarly vulnerable to superadded acute sepsis and that free drainage of the obstructed kidneys cannot be guaranteed with certainty until the prostate has been removed. Further that the bleeding which so often occurs during decompression of the distended bladder comes from blood vessels on the surface of the prostate. It is undoubtedly true that in the majority of cases this is correct but in acute retention of sudden onset it is not always possible to carry out immediate prostatectomy and catheterization if properly conducted will relieve the patient without producing a catastrophe. In chronic retention with high nitrogen retention considerable improvement can be brought about in the patient's condition by continuous drainage if this is carried out with a small suprapubic tube inserted high in the bladder as suggested by Riches. In this manner certain patients suffering from chronic retention may be converted from hopeless to reasonable operative risks. The virtue of the suprapubic drain as opposed to an indwelling urethral catheter is the considerably lesser tendency for infection to develop in the bladder. Decompression should be conducted slowly being controlled by the effect on the blood pressure and the amount of blood in the urine draining from the bladder. A cover of an antibiotic should be used during the period of drainage.

CARCINOMA OF THE PROSTATE

The treatment of this condition is now largely influenced by the knowledge that the majority of cases will be affected profoundly by estrogens. Carcinoma of the prostate as a rule progresses slowly and the average age of onset is sixty-five. These facts make for difficulty in assessing the efficacy of treatment. Radical surgery is more favored in America than in this country, where the opinion is that if the condition can be diagnosed on clinical grounds, radical
surgery is unlikely to be successful in that the disease will have spread beyond the confines of the area which can be excised.

Perineal prostatectomy has always been regarded with suspicion in that even in the best hands it may give rise to permanent incontinence or fistula, both major disasters from the point of view of the patient. Retropubic and Wilson-Hey suprapubic prostatectomy are alternatives but of limited application. Before radical surgery is undertaken it is wise to perform an adequate biopsy and this is preferably carried out by perineal dissection. Needle puncture biopsy is unsatisfactory and transurethral punchings may not include the carcinomatous area. An alternative method of establishing the diagnosis is an estimation of the level of the acid serum phosphatase bearing in mind that anaplastic rapidly growing tumours may not be associated with any alteration in it. King and Armstrong first described an efficient method for its estimation, the normal level being from 0 to 3.5 units. A reading of 3.5 to 5.0 is suggestive if there is clinical evidence to support the diagnosis of carcinoma. 5.0 to 10 is strongly suggestive and over 10 is diagnostic. The alkaline serum phosphatase may also be raised particularly if osteoblastic secondary deposits in bone are present.

A rise of over ten in the acid serum phosphatase may occur in pannicice hyperparathyroidism Paget's disease and secondary deposits in bone from a primary focus anywhere in the body. The highest values may be found in Paget's disease, but here the alkaline serum phosphatase reaches higher levels than are encountered in prostatic cancer. An important point is the radiological appearances of secondary prostatic carcinoma in bone resemble those of osteitis deformans closely.

A reduction in the proportion of androgens to oestrogens creates conditions unfavourable to the growth of carcinoma of the prostate. Bilateral orchidectomy, and the administration of synthetic oestrogens such as stilboestrol first synthesized by Dodds in 1938 and dienestrol over a period of time produce the same result. Fergusson has demonstrated this by repeated biopsies of the prostate in patients undergoing treatment with stilboestrol. More over secondary deposits of the growth in bones are usually similarly influenced. Oestrogen therapy improves the patient's general health and delays the onset of or averts urinary obstruction. It is common to find that considerable amounts of residual urine are eliminated completely as a result of treatment. Nevertheless the value of oestrogen therapy should not blind one to the possibilities of radical surgery in cases deemed to be operable approximately 5 to 10 per cent. of all cases. Should retention arise it should be
treated by transurethral surgery. As stated earlier, estrogens will sometimes fail completely whereas castration may succeed. Occasionally both measures prove valueless. In this case reduction of androgen output can be attempted by suppressing the activity of the pituitary with radiotherapy or by bilateral adrenalectomy as the adrenals elaborate androgen. Androgens cause both normal and neoplastic prostatic tissue to grow and secrete and produce 17-ketosteroid excretion in the urine.

Stilbestrol is well absorbed when taken by the mouth and is inexpensive. It must be given in adequate dosage, not less than 15 to 20 mgm. a day in the first place. The rate and degree of response will vary in different subjects, but once recession of symptoms has occurred a small maintenance dose should be given permanently. Correct dosage can be controlled by estimation of the acid serum phosphatase. Stilbestrol may produce troublesome side effects such as painful enlargement of the breasts with pigmenta-
tion of the areola, oedema of the ankles, cardiac symptoms and hot flushes. Demestrol is better tolerated by some patients and being more potent is given in smaller doses. A marked effect on metastases in bones may be noted. Pain may disappear and radiographic examination may show arrest or recession of growth. Anaemia which is found commonly in carcinoma of the prostate may also be influenced favourably.

When estrogens fail to influence the growth of bone metastases radiotherapy may prove helpful. When they have no effect on the primary growth or cease to influence it bilateral orchidectomy should be carried out. Huggins on the other hand advises orchi-
dectomy in the first place followed later by estrogen therapy.

Bilateral orchidectomy is a simple procedure and should be of the intracapsular variety. This leaves two testicular pads in the scrotum thus avoiding any mental distress the patient might experience from an empty scrotum. A midline anterior scrotal incision is made and first one and then the other testicle delivered into the wound. An anterior incision is made through the tunica albuginea from the upper to the lower pole exposing the seminiferous tubules which are sponged away by gauze dissection down to the mediastinum testis. The tunica is now closed with a running stitch and the testicle returned to the scrotum. The scrotal incision is closed.

Both the testicle and adrenal are stimulated to produce androgen by the anterior pituitary through its acidophile cells which produce adrenocorticotropic hormone (ACTH) and gonadotrophic hormone. The androgen production of the adrenal cortex is depressed by
cortisone and Hayward has suggested this substance may prove
useful in cases in which castration and oestrogens have failed. The
alternative, namely bilateral removal of the adenoids must be
regarded as hazardous.

URETHRAL STRICTURE

Structure in the anterior urethra is usually amenable to treatment
by intermittent dilatation, but can never be regarded as completely
cured. Unless a patient will submit to periodic dilatation trouble

![Diagrams of urethral reconstruction](image)

Fig 117 Reconstruction of the male urethra in cases of stricture

By courtesy of W. J. Simms and the Editor Brit. J. Surg. 1910

will develop sooner or later. Denis Brown has pointed out that a
plastic operation on similar lines to that practised for hypospadias
should cure the patient. Simms has reported on a successful
series of cases treated by this method. The essential steps in the
operation are as follows. The urinary stream must be diverted
and this is best effected by suprapubic cystostomy, perineal urethro-

 stomy being less satisfactory. All scar tissue must be excised
through a median perineal incision in effect an external urethroto-

my. This excision may involve a large part of the corpus spongiosum
and any overlying sinuses. Normal urethra is brought to the surface
at either end of the excised area which is then covered by suturing
the overlying skin as a bridge between the two open ends of the urethra. When healing of the new urethral roof is complete, the skin bridge is buried by undercutting and drawing together the perineal skin on either side of it. Skin approximation is best carried out with interrupted sutures held in position by beads (Fig 117).

The risk of the growth of hair in the new urethra is not great as experimental work has shown that the hair follicles in buried skin strips atrophy. Accurate suture of the skin edges and new urethral orifices is essential to avoid the development of contracture, but corticosteroids might be used during part of the treatment to reduce fibrosis to a minimum.

One of the problems which involves all operations on the penis is the pain and ill effect on the future lines which arise from the occurrence of erections. The administration of oestrogens such as stilboestrol shortly before and after operation will effectively meet this difficulty and has no permanent adverse effects.

References

Carcinoma of Bladder

BRUNSWIG C and PIFNER V K 1931 Arch Surg 62, 125
BRUNSWIG C 1931 Surg Gynec Obstet 93 431
GORDON F J 1949 Ibid 88 441
FERIS D O and OPL T H 1950 Jour Int Med Ass 142 634
JACOBS A and STIRLING W B 1942 Brit J Urol 24 260
MASINA P 1932 Ibid 24 344
STILES H 1941 Surg Gynec Obst 13 127

Prostate-Benign Enlargement

HEY WILSON H 1948 Genito Urinary Surger Wensbury White Edinburgh
WILLIN T 1947 Retropubic Urinary Surger Edinburgh
RICHES E W 1943 Lancet ii 128
ROBINSON R H O B 1948 Genito Urinary Surger Wensbury White Edinburgh
WELLS C 1932 Prostatectomy Edinburgh

Prostate Carcinoma

DODDS E C 1938 Lancet ii 351
FERGUSON J D 1946 Ibid ii 521
HAYWARD W C 1933 J Urol 69 162
HUGGINS C SCOTT W W and HODGES C V 1941 Ibid 46 997
HUGGINS C and SCOTT W W 1942 Ann Surg 122 1031
KING E J and ARMSTRONG A R 1934 Canad med J 31 376
YOUNG H H 1937 Surg Gynec Obstet 64 472

Urethral Stricture

BAKER R, GOVIN D and HUFFER J 1952 Surg Gynec Obstet 95, 446
BROWNE D 1949 J Obstet Gynaecol 25 367
BURNS E and BECKMAN C F 1952 J Urol 67 1000
SWINNEY, J 1952 Brit J Urol 24, 229
PART V—VASCULAR SURGERY

CHAPTER XXI

PERIPHERAL BLOOD VESSELS

C. G. ROB

ARTERY AND VEIN GRAFTING

Introduction

Carrel in 1908 preserved a dog’s aorta for thirty days in isotonic saline at 0° to 1°C and then grafted it into another dog. This was the first successful artery graft. Since this experiment much progress has been made and it is now standard practice to preserve human arteries for long periods and then to graft them into another individual with a very good chance of a successful functional result.

Homografted tissues nearly always die, and this is true of artery grafts. Nevertheless, they work, and although the grafted artery eventually disappears, it survives for a sufficient period to allow the host’s tissues to grow in and form a new blood vessel. What probably happens is that the grafted artery is kept open by the force of the blood flow; a new layer of intima forms from the deposition of cells out of the blood on to the surface of the graft and to a small extent by the growth of intima from the ends of the host vessel. The media and adventitia are replaced by the host’s fibrous tissue, but the elastic fibres which are extracellular structures survive and play an important part in maintaining the stability of the new channel. The graft therefore acts as a scaffold which maintains the blood flow sufficiently long for the tissues of the host to grow in and form a new blood vessel.

Preservation of Grafts in the Artery Bank

An essential aspect of artery grafting is to have an efficient artery bank because it is by this means alone that suitable arteries can be readily available when needed. Gross, Bill and Pierce of Boston (1949) have developed a technique of artery banking based on the researches of Carrel—the results have been good, but the method is time consuming and the arteries survive for only four to six
weeks. A better method is that developed in collaboration by Hufnagel of Washington and Lastcott of St Mary's Hospital London (1950 1952). They take arteries from suitable donors who must have been dead for less than eight hours who have macroscopically normal arteries and who must not have suffered from a transmittable disease. The arteries are removed with a full aseptic technique cleaned down to the adventitia all branches are cut so as to leave a stump about 1 cm long and then they are washed in isotonic saline. They are next placed in sterile pre-cooled tubes and frozen as rapidly as possible using liquid nitrogen which has a temperature of \(-196^\circ\text{C}\) or a mixture of carbon dioxide snow (dry ice) and alcohol the temperature of which is \(-70^\circ\text{C}\). Both these substances are readily available the carbon dioxide snow in any medium sized town and liquid nitrogen wherever there is an oxygen factory. Oxygen is manufactured by liquefying air and distilling it the liquid nitrogen being a by product of this process. Once the arteries have been frozen they are stored in a deep freeze containing a chamber of carbon dioxide snow (dry ice) at a temperature of \(-70^\circ\text{C}\) or less. When required the arteries are thawed as rapidly as possible by immersing them in saline at blood heat 40°C. The method may be summarized as freezing as rapidly as possible storing as cold as possible and thawing as rapidly as possible. It has the advantage that arteries can be stored for long periods and perhaps indefinitely without deterioration.

After this treatment the artery is indistinguishable from normal when examined with a microscope. The reason for this is probably a question of the size of the ice crystals which form within the cells when they are frozen. With slow freezing the crystals are large and disrupt the cell with rapid freezing and thawing, only small crystals form and the cell survives. A dramatic indication of the way in which cells can survive freezing to these very low temperatures is given by the work of Polge and Rowson (1952) they froze bulls' spermatozoa to \(-70^\circ\text{C}\) in a mixture containing 20 per cent glycerol. The spermatozoa were stored at this temperature for periods up to eight days and then used for the artificial insemination of thirty eight cows a pregnancy rate of 79 per cent resulted.

The preservation of arteries by freezing has two disadvantages an expensive deep freeze is needed and the grafts are difficult to transport from hospital to hospital. For some time Hufnagel and Hyatt with their colleagues at the Naval Medical Centre at Bethesda Maryland and Lastcott and myself at St Mary's Hospital London have been trying to eliminate these disadvantages. Preservation by Freeze Drying is now the method by which both institutions
PART V—VASCULAR SURGERY

CHAPTER XVI

PERIPHERAL BLOOD VESSELS

C G ROB

ARTERY AND VEIN GRAFTING

Introduction

Caprel in 1908 preserved a dog’s aorta for thirty days in isotonic saline at 0° to 1° C and then grafted it into another dog. This was the first successful artery graft. Since this experiment much progress has been made and it is now standard practice to preserve human arteries for long periods and then to graft them into another individual with a very good chance of a successful functional result.

Homografted tissues nearly always die and this is true of artery grafts. Nevertheless they work and although the grafted artery eventually disappears it survives for a sufficient period to allow the host’s tissues to grow in and form a new blood vessel. What probably happens is that the grafted artery is kept open by the force of the blood flow; a new layer of intima forms from the deposition of cells out of the blood on to the surface of the graft and to a small extent by the growth of intima from the ends of the host vessel. The media and adventitia are replaced by the host’s fibrous tissue; but the elastic fibres which are extracellular structures survive and play an important part in maintaining the stability of the new channel. The graft therefore acts as a scaffold which maintains the blood flow sufficiently long for the tissues of the host to grow in and form a new blood vessel.

Preservation of Grafts in the Artery Bank

An essential aspect of artery grafting is to have an efficient artery bank because it is by this means alone that suitable arteries can be readily available when needed. Cross, Bill and Pierce of Boston (1949) have developed a technique of artery banking based on the researches of Caprel. The results have been good but the method is time-consuming and the arteries survive for only four to six...
are suitable for an artery graft a surprisingly high figure. In the case of gangrene or threatened gangrene one is dealing with an entirely different problem. The object here is to save the limb and a graft is justified whenever the anatomical situation permits.

Fig 118 Arteriogram showing a thrombosed segment of the superficial femoral artery. Note the irregularities above and below the block; these are due to plaques of atheroma.

Fig 119 Post operation arteriogram of the patient shown in Fig 118. The thrombosed segment has been replaced by an artery graft.

Age or another disease are contraindications but mild angina pectoris or evidence of cerebral arteriosclerosis are not.

Lastcott in a Hunterian Lecture delivered at the Royal College of Surgeons in March 1953 reviewed our experience at St Mary's Hospital with artery grafting. Figs 118 and 119 illustrate a typical case; this patient had severe intermittent claudication.
bank their arteries. Freeze-dried arteries can be stored at room temperatures and transported with as much ease as a tube of sterile distilled water. The results in experimental animals have been satisfactory; in man we have only used them for six months. Over this short period they have proved to be equal to arteries preserved in other ways. We believe that freeze-drying will be the method of choice for banking blood vessels and propose in the near future to publish the technique we employ.

The indications for artery grafting include the correction of certain congenital abnormalities of the great blood vessels such as coarctation of the aorta which is too long for a primary anastomosis bridging the defect after the excision of an aneurysm the repair of a wound of an artery, and on occasions the reconstruction of an artery which has been sacrificed during the excision of a new growth. But the most frequent and important indication is for the treatment of ischemic symptoms in the lower limb.

Artery Grafting for Ischaemia of the Limbs

Obliterative vascular disease has been investigated by Boyd (1950), and as a result he has produced the following classification —

1. Primary Thrombosis of the Popliteal Artery
2. Juvenile Obliterative Arteritis (Buerger's Disease)
3. Senile Obliterative Arteritis
4. Primary Thrombosis of the Superficial Femoral Artery

The importance of Boyd's work is that it has demonstrated clearly that the symptoms of obliterative vascular disease are due in the majority of patients to a localized thrombosis in a major vessel. In other words these patients are suffering from a generalized disease affecting many of their arteries, but the symptoms in the limbs are frequently due to a local process. Artery grafting provides a method by which the local area of occluded artery can be replaced with a new vessel. It has been our experience on the Surgical Unit at St Mary's Hospital that fully two thirds (66 per cent) of all patients with intermittent claudication or gangrene of the toes have a localized block in the main arteries anatomically suitable for an artery graft. This does not mean that two thirds of these patients will be benefited by an artery graft, obviously if the patient has angina pectoris and intermittent claudication it will be a waste of time to have cured intermittent claudication occurring at 100 yards for the patient to be stopped by the worst pain of angina pectoris at 150 yards. In fact about one tenth (10 per cent) of patients with intermittent claudication
are suitable for an artery graft in a suprarenal high figure. In the case of gangrene or threatened gangrene one is dealing with an entirely different problem. The object here is to save the limb and a graft is justified whenever the anatomical situation permits.

Fig 118. Angiogram showing a thrombosed segment of the superficial femoral artery. Note the irregularities above and below the block, these are due to plaques of atheroma.

Fig 119. Post-operation angiogram on the patient shown in Fig. 118. The thrombosed segment has been replaced by an artery graft.

Age or another disease are contraindications but mild angina pectoris or evidence of cerebral arteriosclerosis are not.

Eastcott in a Hunterian Lecture delivered at the Royal College of Surgeons in March 1953 reviewed our experience at St Mary's Hospital with artery grafting. Figs 118 and 119 illustrate a typical case: this patient had severe intermittent claudication.
but no angina pectoris. The pre-operative arteriogram showed that he had a thrombosis of the superficial femoral artery, and that the artery above and below the area of complete block was diseased and atheromatous. At operation the occluded segment of artery was resected and a graft inserted. The presence of atheromatous plaques in the host vessel near to the suture line made the procedure more difficult, but by no means impossible as shown by the successful post-operative result (Fig 119).

The technique of artery grafting may be divided into four phases: (i) the resection of the diseased segment (ii) the preparation of the graft (iii) the insertion of the graft and (iv) the post-operative care.

The diseased segment is usually the distal superficial femoral and proximal popliteal artery. This is best approached through an incision along the line of the vessel with the patient lying on their side. The upper (good) leg being flexed fully at the hip and to 90 degrees at the knee, the lower (bad) leg is fully extended at both the hip and the knee joints. The incision cuts straight through to the artery dividing the adductor magnus muscle in its distal part. No important structures are damaged and all collateral vessels avoided, it is exceptional for more than an occasional artery forcep to be needed. The artery is isolated from the vein and nerve and the thrombosed segment removed between clamps. It is not necessary to put on the proximal clamp until the surgeon has completed the distal anastomosis—the thrombosis in the diseased segment prevents bleeding.

The Preparation of the Graft. After thawing or rehydrating in the case of a freeze dried artery, the branches on the graft are tied with fine silk and the adventitia is stripped back for a distance of about 1 cm from each end. This is important otherwise the needle during the anastomosis may carry small portions of adventitia into the lumen and thrombosis result. The next step is to cut the graft to the right length—the usual fault is to leave it too long. An artery graft must be inserted under considerable tension; we advise that the gap between the two ends of the recipient's artery be measured and the graft cut to a length about 20 per cent less than this. If the graft is not under tension it may thrombose or an aneurysm form a few days later.

The Insertion of the Graft. Blalock's clamps or tape tourniquets are used to hold and approximate the ends of the recipient's artery. Two or three interrupted everting mattress sutures are inserted and the anastomosis completed with a continuous everting mattress suture of fine silk. The distal clamp is removed first and then the
Fig 120 Foot blood flow before and after an artery graft. Note the marked reactive hyperaemia in the left foot. These readings were obtained with a plethysmograph and have been recorded in mls of blood per 100 ml of foot per minute.

Fig 121 Calf blood flow before and after a successful artery graft. Note the increased response to five minutes arterial occlusion in the left leg as compared with the pre-operation readings. These readings were also obtained with a plethysmograph and have been recorded in mls of blood per 100 ml of calf per minute.
thrombosis is recent or if the collateral circulation is failing but unchanged if the collateral circulation has become established. After operation the foot blood flow (skin) rises to five to ten times the pre-operation level and then gradually settles down to equal that on the normal side (Fig. 120). The calf blood flow (muscle) is unchanged at rest before a graft when compared with the normal side and in a patient with an established collateral circulation, we have not measured the response to exercise but we have measured the response to temporary occlusion of the femoral artery which may be comparable. The reactive hyperemia in the calf muscles after five minutes occlusion of the femoral arteries is before grafting reduced to nothing or almost nothing in a patient with severe intermittent claudication after grafting the reactive hyperemia shows an increase in the blood flow of four or five times when compared with the resting level (Fig. 121)

Vein Grafting

Replacing a diseased segment of an artery by a vein graft has certain obvious advantages an artery bank is not needed the graft is autologous and not homologous and the long saphenous vein is readily obtained during an operation on the femoral or popliteal arteries. Fontana and Hubinot (1950) have considerable experience with this method and their results have been good. We have tried this technique on the Surgical Unit at St. Mary's Hospital and Figs. 122 and 123 show arteriograms before and six weeks after a vein graft. In our opinion vein grafts are inferior to artery grafts for two reasons one the vein dilates as shown in Fig. 123 and two it is technically a great deal harder to put in a vein graft particularly if the host vessel is arteriosclerotic. It has been stated by several authorities that a vein grafted into an artery hypertrophies and eventually comes to resemble the host vessel. Our experience has not borne this out. The wall of the vein increases in thickness and there may be some slight increase in the elastic and muscular fibres but the great bulk of the increase consists of fibrous tissue. The arterIALIZATION of a vein noted in arterovenous fistulae is not seen in grafted veins. An alternative procedure is that reported by Kunlin (1951) of Paris he uses a length of saphenous vein to bypass an arterial block. The vein is anastomosed end to side above and below the thrombosed segment of artery. The advantage of this method is that no collateral vessels are damaged. He has treated seventeen patients with obliterative arterial disease in this way in most the vein graft connected the common femoral to the popliteal artery. Of these patients left
hospital improved and in eight of these a pulse was palpable at the foot when it had been impalpable before. Martin (1952) has performed this bypass operation on 12 patients in 4 the result has been satisfactory and in one of these the graft has remained patent for two years.

In War The previous remarks refer to vein grafts in patients with diseased or arteriosclerotic vessels but in war and other circumstances where the arteries of the host are normal a vein graft may be preferable to an artery graft. The main objection to vein grafts in arteriosclerotic patients is that they are technically difficult to put in because one is sewing a thin walled vein to a
thick walled arteries in the plaques of atheroma at or near to the suture line—this does not apply if the host vessel is normal.

The advantages of using the patient's own saphenous vein are great and in war surgery an artery bank is unnecessary. A few vein grafts were used in the 1939–45 war but mostly with the non-suture technique over a vitellum tube—the results were not very encouraging. The Korean War has provided an opportunity for the logical extension of this work. The use of lengths of the patient's own saphenous vein to bridge gaps in his arteries with a meticulous suture anastomosis and no vitellum tubes—the early results in the United States Army have been excellent. A school of vascular surgery has been organized in Korea where field surgeons are trained on dogs to insert vein grafts. So far more than forty vein grafts have been inserted into battle casualties with major vessel injuries (popliteal, femoralis, carotids etc.) and thirty-five of these have remained patent. A great achievement.

Disobliterative Endarterectomy

Dos Santos (1947) was one of the first surgeons to treat ischaemic symptoms in the lower limbs by a direct attack on the area of arterial block as opposed to indirect methods such as sympathectomy. He performed the operation of disobliterative endarterectomy which has been modified by Reboul (1950) and consists in exposing the thrombosed segment opening the vessel, removing the clot and repairing the artery. The clot separates with surprising ease and if the patient is given an adequate course of heparin many of these arteries remain patent and the patient's symptoms are relieved. Forty (1952) has reported a successful disobliterative endarterectomy of the external iliac artery. The success rate with this operation is not high enough however, and Fontaine and Hubmout (1950) who have performed it on twenty occasions report that their results have been variable whilst Reboul and Laubry (1950) report that of ninety-three disobliterations forty-four (47 per cent) remained patent thirty-eight clotted again and eleven patients died.

ANTICOAGULANTS

The 1948 edition of Recent Advances in Surgery contained a chapter on the anticoagulants. Since then they have been used on an even greater scale for a wide variety of diseases both medical and surgical. The best anticoagulant is without doubt heparin: not only does it work quickly but there is an efficient antidote in
protamine sulphate, the dose of which is 5-10 ml of a 1 per cent solution. The disadvantage of heparin is its cost. Dicoumarol and allied drugs are inferior to heparin for several reasons: the response is slow and variable, the effect is cumulative and there is no antidote. They are cheap however. It is possible that in the near future a slightly less pure but cheaper form of heparin may become available.

Regional Heparinization. The disadvantage of systemic anticoagulant therapy in vascular surgery has been the high incidence of hematomata formation in the immediate post operative period. Murray and Best (1939) first suggested regional heparinization as a safer alternative. They recommended this method for use after a vascular anastomosis. As used to day (Freeman and Gussels 1952) a very fine polythene tube is inserted into the vessel and passed to the region of the anastomosis; for example after a porta caval shunt the tube may be passed up a branch of the inferior mesenteric vein. A constant saline infusion containing about 200 mgm (26,000 international units) daily is maintained for up to a week after which the tube is withdrawn. It is claimed that this method prolongs the clotting time of the blood in the region of the anastomosis but has less effect on the systemic clotting time. This finding has never been proved. This dosage of heparin often prolongs the clotting time of the systemic blood to twenty minutes or more and may produce a greater prolongation regionally but in all published work this has been an assumption and not a proven fact. The idea however is attractive.

Trypsin. Recently Innerfield Schwartz and Angrist (1952) have used intravenous trypsin in experimental animals and twenty patients. Their results show that trypsin by the intravenous route produces no untoward reactions if given slowly, that it has anticoagulant properties and most important that it has a lytic effect upon artificially formed thrombin. This latter observation may have far reaching results in the management of patients with thrombotic or embolic episodes in either arteries or veins. The exact mechanism by which it produces lysis of an intravascular thrombus has yet to be worked out.

Long term Anticoagulant Therapy. Marple and Wright (1950) report that dicoumarol may be given to out patients over long periods. They reduce the prothrombin activity to 25 per cent of normal and control it by an estimation of the prothrombin level every third day. They stress that this treatment can only be carried out in an intelligent and co operative patient. The advantages of such a regime for patients with recurrent thromboses are obvious.
MANAGEMENT OF INTERMITTENT CLAUDICATION

The treatment of this symptom by artery grafting has been discussed. Other methods are numerous. Hamilton and Wilson (1952) have recently subjected some of the standard treatments to a critical analysis. A group of patients had their claudication measured by the single test of being asked to walk at their ordinary pace over a pair of steps 18 in high the number of circuits completed and the time taken before the pain developed was recorded. First a group of patients were observed over a period of several weeks without any treatment being given and remarkable fluctuations in the exercise tolerance were noted. It was decided therefore that any single observation was without value and that repeated observations on each patient extending over a considerable period of time were necessary to assess the effect of each method of treatment.

Intermittent Venous Occlusion

This produced some improvement, but the treatment was carried out on m patients. The response to simple rest in bed was then compared with intermittent venous occlusion and it was found to be equally effective.

Drugs

A number of patients were given a course of the following drugs: priscol, vitamin L, methyl testosterone, nicotine, and dihydroergotamine, papaverine and ammophylline. As a control every patient received an equivalent course of a dummy substance, similar in appearance but inert in content. Hamilton and Wilson report that none of the forms of drug therapy used produced an increase in exercise tolerance beyond that occurring naturally in the course of the disease or beyond that produced by the inert preparations.

Edwards and his colleagues (1952) have studied the response of eighty-four patients with peripheral vascular disease to intraarterial injections of priscol, papaverine, alcohol, acetylcholine and histamine. Most of these patients were suffering from senile oblitative arterial disease, their results have been encouraging. Of these drugs priscol and papaverine were the most effective. The former in a dosage of 5-100 mg in 10-20 ml of isotonic saline, and the latter in a dose of 40 mg of papaverine sulphate in 20 ml of isotonic saline.
Myoneurectomy

Boyd and Learmonth (1949) thought of this operation independently, and they have performed it on a number of patients with intermittent claudication. The nerve supplying the muscle which claudicates is divided and the patient can then walk until he is stopped by fatigue or the claudication of another muscle. Boyd (1949) found that the difficulty was to decide which muscle was claudicating; therefore he has worked out the area of skin reference of pain from the various muscles of the lower limb. Pain from the soleus is felt on the back and inner side of the calf of the leg and along the medial border of the sole of the foot. Pain from the gastrocnemius over the back of the knee joint extending up the lower third of the back of the thigh and a similar distance down the back of the calf of the leg. Pain from the muscles in the anterior compartment of the leg is felt over the anterior and lateral surface of the leg and dorsum of the foot.

Tenotomy of the Tendo Achilles

This operation was first used by Boyd (1949) for the treatment of patients with severe intermittent claudication and it has now replaced myoneurectomy in his clinic for the treatment of patients of this type. The tendon is divided with a tenotome; the operation takes a few moments and can be performed on an out patient. After a tenotomy the patient can walk satisfactorily without pain. In our experience at St. Mary's Hospital this operation gives good results in selected patients but it may have to be repeated at intervals. The claudication is relieved but in many patients it recurs after three to nine months. Examination of these patients shows that the tendon although lengthened has reunited a second or even a third tenotomy may be necessary to keep the intermittent claudication under control.

Clinical Plethysmography

The plethysmograph has been essentially a piece of research apparatus but Goetz (1949) has produced a portable digital plethysmograph with which the blood flow through a finger or toe can be measured. This apparatus can be worked with sufficient ease for it to be of use to a clinician engaged in the diagnosis and treatment of peripheral disease. It permits measurement of the actual rate of blood flow through a digit and for example it is of particular value in determining the completeness of a sympathectomy.
Aortography

Although aortography is not new, dos Santos described in 1929 a technique essentially similar to that in use today, it is being performed more often. There are two methods—the direct and the retrograde. In the direct method a wide bore needle is inserted into the abdominal aorta from the back, the needle passing just below the left eleventh rib. In the retrograde method a fine polythene catheter is passed up the radial or ulnar arteries into the aorta. In both techniques about 40 ml of a 70 per cent solution of pyeoloid or diodrast are injected as rapidly as possible under general anesthesia and X-rays taken during and just after the end of the injection. Most authors including Deterling (1952) prefer the direct method for visualization of the abdominal aorta—they have found it relatively safe and the picture is better than that obtained by the retrograde route. The thoracic aorta however is best demonstrated by the retrograde technique.

Phenol Sympathetic Block

Hayton in 1949 reported that he had injected an aqueous solution of phenol into the lumbar sympathetic chain of 220 patients. In 90 per cent a dry and warm foot resulted and in 60 per cent the effect was lasting; the foot remaining warm and dry for months. The technique he recommended consisted of a preliminary injection of 2 ml of a 4 per cent procaine solution if this produced evidence of sympathetic interruption without symptoms of numbness or paralysis he then injected 10–12 ml of a 10 per cent solution of phenol in water.

CONSERVATIVE AMPUTATIONS FOR GANGRENE

Gangrene of the toes or forefoot is usually associated with a main vessel block but in a minority of patients the block is peripheral. In some of these latter patients a conservative amputation can be performed. Diabetics may develop one of two types of gangrene; they may have arteriosclerosis and their gangrene be similar to arteriosclerotic gangrene in anyone else or they may develop gangrene due to an infection of a toe.

The main points in the selection of patients for a conservative amputation are: the presence of palpable pulsation in the popliteal posterior tibial or dorsalis pedis arteries, evidence of infective gangrene in a diabetic or an arteriogram which shows that the block is in the arteries of the toes or the forefoot. Under these circumstances primary healing will occur if the line of section passes
through healthy tissue. There is an increasing tendency to avoid all set or formal amputations in these patients. Fig 124 shows a foot one year after the second and third toes, the corresponding metatarsals and the adjacent soft parts had been excised from a diabetic patient aged seventy six, primary healing occurred and the patient left hospital within two weeks.

Of the formal amputations, many surgeons prefer the site of election in the thigh because of the greater certainty of primary healing, but others are using more conservative operations even for patients with main vessel occlusions. Of the more conservative operations, the transmetatarsal is one of the most popular and Warren Crawford, Hardy and McKittrick (1952) report 62.8 per cent healing in a group of forty-three transmetatarsal amputations performed on forty patients with arterial deficiency only four of these patients had a lumbar sympathectomy.

SYMPATHECTOMY

It is probable that sympathectomy is of value in assisting healing after an amputation for gangrene. Two points should be mentioned however. First, after a sympathectomy the blood flow through the skin is greatest during the first forty-eight hours (Lynn and Barcroft 1950) after that it falls progressively, but usually remains a little above the pre-operation level. Secondly, the standard operation of
lumbar sympathectomy removes 1 in. of chain centred on the third lumbar vertebra. This procedure produces vasodilation and abolishes sweating from the skin of the limb below the knee joint. The practical importance of this is that the standard lumbar ganghionectiony will aid healing after an amputation below the knee but at the site of election through the thigh no benefit accrues because the denervated area does not remain attached to the patient to denervate the skin flaps of a mid-thigh amputation it is necessary to remove the first lumbar ganglion as well. Similarly, in intermittent claudication the area denervated should include the region of the block in the main artery because it is around this that the collateral vessels must form.

Ganghionectiony or Pre-ganghonic Section Kazmouth and Hadfield (1952) have compared the results of these two operations in a group of patients suffering from Raynaud's disease. They have found the clinical results of the two operations to be the same for Raynaud's disease but that side effects, such as a Horner's syndrome and nasal congestion occur with ganghionectiony and not pre-ganghonic section. For this reason they prefer the latter operation.

THE TREATMENT OF AORTIC AND OTHER ANEURYSMS ARTERIAL SPASM

During the last few years several ingenious methods for the treatment of arteriosclerotic aortic aneurysms have been described. Linton (1951) recommends intrasaccular wiring. A fine cannula is introduced into the aneurysm and 30 gauge stainless steel wire threaded through this and into the sac. His method differs from previous attempts at intrasaccular wiring in two ways. He inserts a great deal more wire than any of his predecessors the shortest length he has introduced was 100 ft and the longest 905 ft. He makes multiple punctures with the cannula to get this length of wire into the aneurysm the object is to fill the whole sac with wire. It is interesting that he is willing to wire an aneurysm after rupture has occurred. There is usually only a small leak at first and he has wired six aneurysms of this type. Three of these six patients died within one week, two lived fourteen and eighteen months respectively, and one patient has lived for two and a half years and survived a second wiring for another rupture. He has wired seventeen aortic aneurysms with benefit to fifteen patients and no benefit to two.

Pope (1948) has wrapped aneurysms of the aorta in cellophane
There are several different kinds of cellophane—some produce no tissue reaction others produce intense fibrosis. In this method polythene cellophane has been used, which produces an intense foreign body fibrous tissue reaction. A sheet of this substance has been placed round an aortic aneurysm in nine patients four survived for from one to three years. The fibrous tissue reaction takes time to develop and the maximum benefit was not apparent for between three and four months. The active principle in polythene cellophane which causes the fibrosis is decetylphosphate. Berman and Hill (1952) have used this substance mixed with olive oil for the periaortic injection of aneurysms. In no patient could reduction in the size of the sac be shown, but a thick layer of fibrous tissue can be relied on to form, and this may limit the further expansion of the aneurysm. Symptoms were relieved in most patients but rupture has occurred. This method appears to be worth an extended clinical trial as it is a minor procedure relatively free from risk.

The treatment of aortic aneurysms by artery grafting is of value for anatomical reasons; the aneurysm must be situated either between the left subclavian artery and the diaphragm or below the renal vessels. Brock (1952) has reported a success with this method and we have found it satisfactory.

Temporal Arteritis

Of recent years interest in this condition which was described by Jonathan Hutchinson has been renewed. The patients suffer from fronto-temporal headache the temporal artery is thickened, tortuous, tender and nodular and the overlying skin may be red. Excision of the abnormal vessel relieves the headache but the local process in the temporal arteries is usually part of generalized arterial disease.

Cirsoid Aneurysm

This term is taken to mean congenital arterial venous fistula of the vessels of the scalp usually the superficial temporal artery and vein. The condition becomes apparent during adult life and the treatment is difficult. The best method is probably to tie the external carotid artery and then to turn down a scalp flap containing the aneurysm which is dissected off the deep surface. Vessels may pass from the aneurysm to the skull and are difficult to control. Diathermy, coagulation bone wax and direct pressure help.
ARTERIAL SPASM

Mycotic Aneurysms

These are nearly always caused by bacterial endocarditis which disease was invariably fatal before the discovery of the antibiotics. Today patients so affected may live to have their aneurysms treated (Goudubs, 1919). The most usual site for the development of a mycotic aneurysm is adjacent to a perforation of the aorta or near to the aortic valve, and Brock (1952) has resected one of these and replaced it with an artery graft. Other sites in decreasing order of frequency are the superior mesenteric, cerebral, femoral, hepatic and splenic arteries. Most surgeons (Lambert Rogers, 1951) recommend antibiotics and only treat the aneurysm surgically if it enlarges rapidly or causes symptoms.

Traumatic Arterial Spasm

Kimmonth (1952) has investigated the causes of arterial spasm changes in the size of large arteries and the treatment of arterial spasm. He believes that traumatic arterial spasm is due to mechanical stimulation of the vessel wall itself. In a group of experimental animals various methods for the relief of arterial spasm were investigated including the local application of papaverine, procaine, caffeine, procoll, heparin and benzodiazepane. Papaverine consistently produced relaxation of the artery. He recommends that in a case of traumatic arterial spasm the treatment should be as follows: the artery should be exposed and the whole area inspected. If the artery is found to be in spasm it should be covered with a 2.5 per cent solution of papaverine sulphate for ten to fifteen minutes. He has used the method on two patients and in both the arterial spasm relaxed satisfactorily. If the vessel remains in spasm he advises suture of the wound with a fine polythene tube down to the artery and at intervals 1 per cent papaverine sulphate should be instilled into the tube until the circulation has been restored. The systemic administration of papaverine is without effect (Kimmonth 1951).

Plastics in Peripheral Vascular Surgery

The use of polythene cellophane for the treatment of aortic aneurysm has been described. This is a use for an irritant plastic but many plastics are inert in the tissues and these also have a use in vascular surgery. A polythene tube is the most satisfactory way of maintaining an intravenous infusion for a long period. Blood clots much less readily in a polythene than a metal cannula and such an infusion may continue satisfactorily for days or weeks. Hufnagel (1947) has used a leucite tube to replace segments of
the thoracic aorta of dogs with good functional results, and more recently Voorhers (1952) and his colleagues have bridged defects in the aorta of experimental animals with a prosthesis made of Vinyon "N" cloth. This latter development is of interest and may prove to be of clinical value. They folded the clot longitudinally and stitched it to form a tube of the required diameter and length. It was then placed across a gap in the abdominal aorta of a number of dogs. Vinyon cloth is a fine mesh material, blood leaks through, but this is soon stopped by the formation of fibrin plugs, so that the clot tube can conduct the arterial blood flow. These clot tubes become lined by a film of flattened cells similar in appearance to normal intima.

THE VENOUS SYSTEM

Phlebography

There are two main methods of demonstrating the peripheral venous system on an X-ray film, the orthograde and the retrograde. The orthograde or ascending phlebogram is performed by injecting 20 c.c. of 50 per cent. pyocoll into a vein on the dorsum of the foot, a blood pressure cuff is placed above the ankle to obstruct the superficial veins and force the contrast medium into the deep veins. A radiograph obtained by this method is of little value because it does not show the state of the valves in the deep veins.

A modification of this method of ascending phlebography designed to demonstrate the valves in the deep veins has been suggested by Scott and Roach (1951) and an efficient technique worked out by Cockett (1952). The injection is performed and the blood pressure cuff applied as before, but just before the injection has been completed the patient is told to perform the Valsalva manoeuvre (forced expiration against a closed mouth and nostrils), this forces the contrast medium back down the veins and the valves are seen in a most convincing manner.

The retrograde phlebogram has been used by Bauer (1950). He ties the saphenous vein at the fossa ovalis in the groin and injects the contrast medium into the proximal stump. The table is tilted with the feet down to an angle of 45 degrees. In the normal patient the contrast medium flows down to the first valve or disappears into the vena cava when the valves are incompetent it flows down to the knee or lower.

Interruption of the Deep Veins of the Lower Limbs

In 1950 Bauer reported his results after division of the popliteal vein in 245 patients with evidence of valvular incompetence in the
femoral and popliteal veins. To use his own words: "A marked improvement was observed in all patients. The aching and bursting was relieved almost at once. The ulcers generally healed in a shorter time than might have been expected with conservative treatment." Walker in the same year analysed a much smaller series of thirty popliteal ligations performed at St. Bartholomew's Hospital. In his opinion the operation was most satisfactory when bursting pain was a prominent feature. He advised measurement of the venous pressure as a valuable aid to the selection of patients likely to benefit from a popliteal vein interruption. From a small personal experience of this operation it appears that Walker's conclusions are correct in that deep vein ligation benefits many patients with bursting pain and some patients with ulceration but has little if any effect on oedema.

The previous edition of *Recent Advances in Surgery* contained a report of the work of Allen on interruption of the femoral veins or inferior vena cava as a prophylactic measure against pulmonary embolism. The effects of this operation have now been assessed. Erb and Schumann (1951) subjected every other patient admitted to their service with a fractured neck of femur to bilateral superficial femoral vein ligation. Fifty patients had their veins tied and fifty were used as controls. Nine (18 per cent) of the patients with ligated veins developed pulmonary emboli and only six (12 per cent) of the controls. Only one patient died of a pulmonary embolus and the veins of this patient had been tied. Allen (1949) himself reports the following results from the Massachusetts General Hospital of 905 middle-aged patients given dexamethasone prophylactically after operation there were no deaths from pulmonary embolism but two died from haemorrhage. Of 1500 patients subjected to femoral vein ligation seven died from subsequent emboli.

Ligation of the inferior vena cava may well be effective in preventing pulmonary infarction but the late sequelae are crippling. Shea and Robertson (1950) report that of thirty-seven patients subjected to interruption of the inferior vena cava all had subjective complaints, all had some objective changes, such as oedema, varicosities or chronic leg ulcers, some were able to work, but others were completely disabled. They conclude that vena caval ligation should be considered only as a life-saving measure and should not be used prophylactically.

Gravitational Ulcers

Cockett (1953), amongst many others, has studied this problem...
He considers that whilst some ulcers are associated with incompetent saphenous veins and many with incompetent deep veins, in a high proportion some additional local cause must exist. He bases this opinion on the following observations. Many patients with ulcers show no evidence of saphenous valvular incompetence. Many patients with long standing varicose veins have no ulcers. Saphenous ligation properly performed and combined when necessary with venous stripping fails to cure ulcers in a significant proportion of patients. Many patients with ulcers have abnormal deep veins. Efficient pressure on the ulcer heals it in a high proportion of cases. These ulcers have a constant anatomical position just above the malleoli, usually the medial.

During a search for a local cause he has made the following observations. The venous drainage from the skin above the malleoli is not directly to the saphenous veins; it passes via a group of perforating veins through the deep fascia to the deep veins in the calf (Fig. 125). The skin of this area has a particularly poor arterial blood supply as shown by injecting the arteries with a bismuth suspension in the postmortem room dissecting the skin and sub
Figures 126 and 127. Photographs from an operation showing an incompetent perforating vein in the base of an ulcer. The saphenous vein seen lying anteriorly is normal.

[Figures 126 and 127 by courtesy of Dr. H. J. Whitt and the Editor, The Lancet]
cutaneous tissues from the limb and X-raying them. The calf muscle pump exerts a considerable effect by pumping blood from the area during activity. There is a constant valve on the main communicating vein draining this area of skin just deep to the deep fascia and before it joins the deep veins. This last observation is in Coeletet's view the key to this problem. These incompetent perforating veins can be demonstrated in many ulcer patients, both by phlebograms and during surgical operations (Figs 126 and 127)

If these veins are tied (it is usually necessary to excise the ulcer to expose this vein) many ulcers which have failed to respond to saphenous ligation heal satisfactorily.

The Injection Treatment of Varicose Veins

The last few years have witnessed a decreased use of this method of treatment. Kinnmonth and Robertson (1949) have studied the method by injecting pyelodil into normal and varicose veins using techniques similar to the standard therapeutic methods and then X-raying the limbs. They have found that the fluid injected had a tendency to pool on the valves of the deep veins. They recommend that retrograde injection of varices at the time of saphenous ligation should be abandoned. That varices should be injected by the empty vein technique with the limb horizontal that the amount injected should not exceed 1.5 ml and that sclerosing agents requiring a larger volume should not be used. After the injection the leg should remain at rest for five minutes and then elevated and exercised vigorously to sweep the sclerosing solution into the general circulation where it is made harmless by dilution.

References

ALLEN A W 1949 Surgery 26 1
BAUER G 1950 Brit Med Jour 2 318
BFRMAN J K HULL J E 1952 Surg Gyneec and Obstet 94 543
BROCK R C 1952 Lettsomian Lect Med Soc of Lond February 17th
BOYD A M 1950 'Techniques in British Surgery' edited by R Mangot Saunders London 81
CARRIL A 1956 J Amer med Ass 51 1662
COCKETT F B and D E ELDAR JONES 1953 Lancet 1 17
COCKETT F B and GRIFFITH G 1963 Paper read at the International Inst of Radiol December 4th
DETERLING R A 1952 Surgery 31 38
EASTCOTT H H G and HUEFLAGE C A 1940 Surg 1st Annu Amer Col Surg 209
EASTCOTT H H G and HUEFLAGE C A 1952 Lancet 1 531
EDWARDS J W L JONES N B MCCONNELL R R PEMBERTON H S and WATSON D C 1952 Brit Med Jour 2 808
FIND W. H. and SCHMANN J. H. 1941 Surgery 29 410
FONTAINE R. and HENDRICK 1890 Acta Chir. Belgica 49 337 480
FORTY F. 1942 Brit. J. Surg. 19 224
FREEMAN H. I. and CHERIAN R. S. 1921 Hist. 31 11
COTTS R. H. 1949 Brit. J. Surg. 37 75
HANNA T. A. 1947 Arch. Surg. 54 38.
HUGHES C. A. 1947 Brit. J. Surg. 34 782
KINMONTH J. H. 1941 Surgical Progress, London, Butterworth, p. 293
KINNIN J. 1934 Acta Chir. Lomb. 70 206
LINTON R. 1931 Angiology 2 483
MARTIN P. 1932 Torsional Contraction.
MURRAY I. W. G. and HESTON C. H. 1939 Surgery 10 163
NOBLE C. and ROWSON L. F. 1932 Nature 139 626
OLSON J. K. 1939 Dis. of Chest 55 726
REBBEL H. and LAUBER P. 1939 Proc. R. Soc. Med. 43 547
ROB B. C. 1939 End. 46 122
ROGERS LAMBERT 1931 Brit. J. Surg. 39 35
ROSANTOS C. J. 1947 Mem. Acad. de cirurg. 73 469
ROSANTOS S. LAMAS C. and PERIFERI CALDAS P. 1929 Bull. et mem. Soc. nat. de Cirurg. 55 587
PART VI — THE BREAST

CHAPTER XXXII

CARCINOMA

H J B ATKINS

Ætiology

Within the last twenty years advances of a most stimulating kind have been made in our knowledge of the possible causes of breast cancer. Unfortunately much of this work has been done on the mouse and how far results achieved in this field of biology will be of value in helping to solve problems of human pathology is unpredictable.

Genetic Influence. By selective breeding it is possible, in the mouse, to produce a strain in which the adult females will almost invariably develop cancer of the breast, or alternatively to produce a strain in which breast cancer practically never occurs. It might be concluded that this was clear enough evidence of a hereditary factor in the genesis of breast cancer in the mouse, but never were the pitfalls of jumping to conclusions better exemplified. Further work has shown that much of this effect is due to the transmission of a factor from mother to daughter in the maternal milk, an influence which will be discussed more fully below, and one which is in no sense genetic. If we subtract this transmissible influence does a truly hereditary factor remain? Is there anything, that is in the genes of the mother which makes the daughter more susceptible to cancer of the breast? The difficulties of separating these two influences (if there be two) even in an animal so suitable for such experiments as the mouse are considerable but it would appear that there is indeed a genetic constitution which determines susceptibility to breast cancer and that breast cancer is a truly hereditary disease apart altogether from the milk factor. The nature of this genetic influence is now the subject of busy scrutiny and it would appear that it may consist of a constitutional response to hormonal influences which renders the possessor more, or less liable to breast cancer.

When we turn to the human two difficulties confront us. The first concerns the question as to whether breast cancer is in the
human, a family affair at all, and secondly if it be so, whether there are two factors involved, a constitutional or genetic one and an extraneous or transmissible one.

The fact that there should be any argument over the possibility that cancer of the breast in humans tends to run in families supposes that this tendency if it exists is not a very strong one and requires careful statistical analysis on a large scale to reveal it. Of course cancer of the breast is so common that the operation of chance would be bound to reveal isolated instances where many members of many generations of a particular family have suffered from this disease. Instances so striking as to bias the observer in favour of the possibility of a hereditary influence whatever the evidence and the citation of such peculiar incidents can have little bearing on the problem and may only confuse the issue. There is, in fact, some conflict of evidence on the matter but it would appear that the relatives of patients with cancer of the breast suffer themselves from cancer of the breast slightly more frequently than would be expected if they had no special predisposition. In other words, there is probably a slight tendency for cancer of the breast to run in families.

Even if this be true, we are in no position to say how far this effect is genetic and how far transmissible or whether in the human a transmissible factor exists at all a problem to which we will return later.

Hormonal Influence. Ever since it was shown on the one hand, that cancer of the breast could be prevented in female mice by castration at an early age and on the other hand, that it could be caused in male mice by the administration of oestrogens, the importance of hormones in the genesis of breast cancer has been appreciated. No purpose can be served in retelling here the story of endocrine influences in the genesis of breast cancer in the mouse. This branch of experimental pathology is not a recent advance and whereas the relation of oestrogens to cancer is an established fact, the nature of this relation is as yet imperfectly understood.

When we turn to the human the situation is as always more obscure. The observer once more finds it difficult to free himself ab initio from a bias in favour of the proposition that there is a relation between hormones and cancer of the breast. This bias is fortified by the fact that this relation can be proved in the mouse that hormones can in certain cases cause cancers of the breast to regress and by inference that other hormones may cause such cancers to flourish and finally that striking isolated instances can be culled from the literature where this relation is exemplified in a
highly suggestive manner the most formidable being the appearance of bilateral cancer of the breast in a male treated by estrogens for carcinoma of the prostate. Each of these pieces of evidence contains a flaw but it would be mulish to disregard a number of synopses however dilapidated all pointing in the same direction and with all due scientific reservation we may say that it is highly probable that hormones play a part in the development of cancer of the breast in the human perhaps by developing the glandular tissue perhaps by rendering this tissue more susceptible to some other influence perhaps by both.

The Transmissible Factor. Buttner (1937) has shown that by removing a litter of mice from their mother at birth and suckling them at the breasts of a foster mother the incidence of cancer of the breast in this litter when it grows up approximates to that of the strain of the foster mother rather than to that of the mother. Thus the litter from a strain showing a high incidence of breast cancer could be protected by suckling from a foster mother of a strain with a low incidence of breast cancer. Conversely the litter of a strain with a low incidence of breast cancer could be given cancer by suckling from a foster mother of a strain with a high incidence of breast cancer. This work which has been repeated in laboratories all over the world has led to the important conception of a milk factor which is responsible for the development of cancer of the breast in the mouse. This milk factor has been pursued with relentless vigour and its chemical, physical and biological properties are beginning to emerge. In all these it would do for a virus and even its photograph under the electron microscope is a passable likeness. That it can be recovered from tumour tissue and is found in the semen of a susceptible strain renders the original term milk factor inappropriate and it were better termed the transmissible factor or even as it has been by certain workers with a familiarity far from contemptuous simply the factor.

Our interest is focused principally around the question as to whether this factor operates in the genesis of human breast cancer. Examination of this problem the elucidation of which is fraught with such vital consequences whatever the answer is proceeding along these lines —

(1) Electron microscopic studies of human breast milk (Gross L., McCarty K S, Gessler A E (1952)) reveal particles similar to those occurring in the milk of susceptible mice. These particles are freely distributed throughout the milk of most humans so examined. Occasionally they are absent and in such cases there is
no history of breast cancer amongst the near relatives. Since they have never been reported as being absent except in those instances when no near relative has suffered from cancer of the breast, and since in many cases when the family history is strong the milk is unduly full of these particles they may indeed be connected with the genesis of human breast cancer (Fig 128). Supposing that by some means it were possible to prove that these particles in human milk are particles of the transmissible factor we are still far from answering the question as to whether breast feeding has any relation to the genesis of human breast cancer because these particles may be transmitted as well through the placenta during the natural foiling of an infant or by other means.

(a) Sample of milk from a woman with a family record negative for any malignant tumours for two generations
(b) Sample of milk from a woman whose mother had cancer of the breast

received human milk is the same as in the general population. If this could be shown to be the case then breast feeding could have no effect on the production of this form of cancer. The difficulties of being certain however whether any particular patient has or has not received human milk forty or fifty years before are so great even when the mother is still living to testify on this matter, that little reliance can be placed on results obtained by such a method.

(iii) An alternative is to accumulate a panel of female children who have never received human milk and to see whether the incidence of cancer of the breast is in them different from that in the general population. This investigation is being carried out and with the help of the Society of Medical Officers of Health such a panel is being collected. An enquiry is being made into the early health history of these children in order to determine the effect of breast feeding in protecting an infant from the menace of virus infection during the early years. In addition, by means of a direct follow up by eventual reference to the Cancer Registry and by ultimate resort to the death certificate it will be possible to determine the rate of incidence of cancer of the breast in these persons with a sufficient degree of accuracy to compare this with the rate in the general population.

Until more certain evidence is forthcoming and considering the many proven benefits to both mother and child of breast feeding this should be actively encouraged as it is known to protect the mother to some extent from cancer whatever the unknown effect in this respect may be on the child.

Pathology

Much recent work has been conducted on the rate and direction of spread of cancer of the breast. In regard to the rate of spread endeavours have been made to grade tumours by histological means into those which may be expected to spread quickly and those which are likely to pursue a more leisurely course. A contribution to this attempt has been made by Bloom (1950) but it is perhaps too early yet to say whether the histological criteria adopted in this system of grading will turn out to be the best for determining this point.

A contribution of fundamental importance is that of R. S. Handley (1952a) who has investigated the spread of cancers of the breast to the chain of glands along the internal mammary artery. In 119 operable cases in which the internal mammary chain was examined for involvement the distribution of glandular metastases was as shown (Table IX).
Table IX—Invasion of Internal Mammary Lymph Nodes
Analysis of 110 Cases

<table>
<thead>
<tr>
<th>Site of primary growth</th>
<th>Inner half of breast</th>
<th>Outer half of breast</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of cases</td>
<td>4 (36%)</td>
<td>74 (66%)</td>
<td>118</td>
</tr>
<tr>
<td>All nodes free</td>
<td>10 (9%)</td>
<td>28 (25%)</td>
<td>38 (33%)</td>
</tr>
<tr>
<td>Axillary nodes only invaded</td>
<td>8 (7%)</td>
<td>72 (65%)</td>
<td>80 (72%)</td>
</tr>
<tr>
<td>Internal mammary nodes only invaded</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Both axillary and internal mammary nodes invaded</td>
<td>24 (20%)</td>
<td>13 (12%)</td>
<td>37 (33%)</td>
</tr>
</tbody>
</table>

From R S Handler (1952)

This means that the method by which these cases were treated
namely, by radical mastectomy was pathologically inadequate in a
third of their number. By the ordinary techniques of operation
for breast cancer therefore the result is doomed to failure in a third
of the cases because of spread to the internal mammary chain,
which is outside the range of tissue extirpated and the proportion
is even higher in growths of the medial half of the breast. Nor can
deep X-ray therapy altogether make up for this defect because
Handler (1952) has demonstrated viable cancer cells in these
glands after they have been subjected to rigorous irradiation.
Nevertheless the discovery of viable cancer cells in tissue which
has been irradiated does not mean that the treatment has been
valueless since a cell may still be visible but its malignant properties
may have been extirpated or severely crippled.

This work however must profoundly modify our views as to
treatment particularly perhaps in cancers of the inner half of the
breast and it will be necessary now to examine how far these
pathological concepts fit in with and influence modern views of
therapy.

Treatment

Value in Prolonging Life
The surgical world was startled not so long ago, by a statistical survey
contending that radical mastectomy does little or nothing to increase the expectancy of life
of patients suffering from carcinoma of the breast (Park, W W
and Lees J C 1951) Doll (1952) in an authoritative statistical
evaluation of this view maintains however, that the figures
produced do not substantiate such a contention. Nevertheless
the effect of the very suggestion has been to destroy any complacent
satisfaction which we may have had for existing methods. Such an unduly pessimistic outlook is perhaps, a reflection of the significance of the pathological advances outlined above and it is interesting to see how those concerned with the treatment of cancer of the breast have reacted to this atmosphere.

Modern Trends. It is possible to discern two distinct and contradictory trends—the one which seems to argue that cancer of the breast is in general incurable, and that the best that we can do is to arrest its progress until finally its relentless advance overwhelms the patient or she succumbs in the meanwhile to some other malady. The other argues that these fresh pathological discoveries are a challenge to the surgeon who must devise yet more radical procedures to remove these recently explored paths of spread.

The first school is represented by McWhirter (1948) who, since 1941, has treated nearly every early carcinoma of the breast occurring in the South Eastern region of Scotland by one method—namely, simple mastectomy followed by irradiation of the glandular fields. A comparison of the results in this series with others published elsewhere in which radical mastectomy has been performed where practicable can never be exact because the staging of cases in which the glands have not been removed is not subject to the stern corrective of histological examination of the axillary field and in neither series is the state of the internal mammary glands known. This loophole provides scope for endless discussion and juggling with figures so that the truth, if there be such a thing, is difficult to come by. When however we realize that it is possible to put forward figures purporting to uphold the view that the results of treatment in terms of life expectancy by orthodox surgical methods do not differ substantially from the results of withholding treatment, it is easy to understand how a comparison of the results of two methods of treatment differing but little in their efficacy can be most confusing. Even though complete reliance may be placed upon the absolute integrity of the investigator the greatest reserve must be maintained in accepting statistical evidence in such matters when the results appear to be contradictory to common experience. Whereas the figures may hold together statistically, the observations upon which they are based may be open to wide interpretation. For instance, the diagnosis of Stage I cancer of the breast depends in many cases simply on the opinion of the histologist examining the section and the criteria for diagnosis of cancer differ materially from school to school.

It may be that one of the reasons why the results of treatment by McWhirter's method compare not unfavourably with the results
of treatment by radical mastectomy is because as we shall see, most series treated by the latter method have in the past been compounded of cases that were unsuitable for radical mastectomy in the first place and in which the operation did harm together with those in which radical mastectomy was proper and in which the prognosis is excellent.

At the other extreme, Urban (1952) has devised an operation whereby the internal mammary chain is removed as part of the radical mastectomy specimen. He excises half the sternum, with its attached costal cartilages, together with the internal mammary artery and its satellite lymph nodes. The defect in the chest wall is made up with a fascia lata graft and the whole area is covered by swinging the opposite breast over as a pedicle flap. Thus formulable operation takes five to six hours and although only one case out of the first 40 has been lost in the immediate post operative period one feels inclined to wait with watchful interest before passing judgment on a procedure so radical. Some following the same line of reasoning have extended their operative field in other directions. Wangensteen (1952) makes excursions into the supraclavicular triangle and others remove both breasts. It cannot be claimed that many of these measures are recent or that they will turn out to be advances, but they are cited to illustrate the stimulus which our dissatisfaction with present methods affords.

How then is the neutral observer to proceed? As in so many problems where life is at stake and until one extreme or the other can be shown to hold the advantage, it would be wise to keep to the middle path. Even so the automatic prescription of radical mastectomy for early cancer of the breast is not as we now appreciate the best that we can do and in regard to this problem an eclectic attitude may be enjoined. A most thoughtful exponent of this school is Waldron Smithers (1952) who breathes new vigour into the hackneyed expression that each case must be judged on its merits. His view is that surgery is more effective in eradicating breast cancer than radiotherapy but unsuccessful surgery may make matters worse whereas radiotherapy generally provides some improvement and may lead to tumour regression for many years.

This principle if we consider the primary growth and the glandular field as separate entities may be applied in many ways —

1. A patient with a small tumour in the outer half of the breast and with no more than one or two palpable and mobile axillary glands should have a radical mastectomy post operative irradiation being given if careful examination of the specimen indicates that local recurrence is likely.
A patient with a small mobile tumour in the lateral half of the breast but who has many axillary glands involved, particularly if these are in the apex of the axilla, should be treated by local mastectomy and post operative irradiation to the glandular fields.

A patient with a short history and a substantial lump in the medial half of the breast with enlarged glands in the axilla, implying a rapidly growing cancer and involvement of the internal mammary chain, is best treated by radiotherapy alone.

The possible permutations and combinations of clinical presentation are too varied to allow a discussion of each, but the above are good examples of how this principle works in practice, and where we may indeed we must, leave the matter. In this problem, all that we can do is to keep an open mind and follow for the time being, that practice which, having regard to the available evidence, seems the most sensible.

Hormones: The treatment of advanced cancer of the breast by hormones is in a small proportion of cases, so successful that no patient should be allowed to die from the effects of mammary cancer without a trial of this form of therapy. It is not on the other hand sufficiently established to be indicated where other methods of treatment of proven efficacy are appropriate unless in conjunction with these.

Both androgens and oestrogens cause a regression of these cancers in certain cases and their mode of action being unknown, their prescription is empirical. The effect of these substances on the growth can be detected histologically and clinically. The former effect has not been fully investigated but the latter is there for all eyes to see, and if we are to compare the effect of one hormone with another, if we are to determine the best dosage of a particular hormone or if we are to assess the susceptibility of a particular manifestation of cancer to a hormone, it is most desirable to be able to express clinical improvement numerically.

The Mean Clinical Value: No method of numerical assessment can be more than an approximation and it must be interpreted with this qualification in mind but the most successful is that devised by Walpole and Paterson (1949) whereby the progress of each lesion is assessed separately and if it is improving it is assigned 2 marks, if stationary 1, and if deteriorating 0. The appearance of a new lesion also being given 0. The average is taken by dividing the sum of these marks by the number of lesions and the whole is brought to a willy-nilly number by multiplying this average by 6.

Fig. 129 illustrates the application of this principle.

Thus, it will be seen that a patient who is responding well receives
ASSESSMENT OF MEAN CLINICAL VALUE

BEFORE TREATMENT DURING TREATMENT

LESIONS
1 L BREAST 1 L BREAST-IMPROVED(2)
2 L AXILLA 2 L AXILLA- (2)
3 L SUPRACLAVICULAR 3 L SUPRACLAV-
 - UNALTERED(1)
4 SKIN NODULE 4 A NEW SKIN NODULE(0)
 (THE APPEARANCE OF A NEW LESION IS MARKED 0)

MCV = \frac{\text{TOTAL MARKS}}{\text{NO OF LESIONS}} \times 6

\begin{align*}
\text{IN ABOVE CASE -} \\
\text{MCV} = \frac{2+2+1+0}{4} \times 6 &= 7.5
\end{align*}

TO BRING IT TO SUITABLE NUMBER

\begin{align*}
\text{MAXIMUM} &= 12 \\
\text{NO EFFECT} &= 6 \\
\text{MINIMUM} &= 0
\end{align*}

\text{Fig. 120} \quad \text{See text}

MEAN CLINICAL VALUES

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{MRS N 73 YRS}
\end{figure}

\text{MCV 6}

\text{MONTHS}

\text{Fig. 130} \quad \text{See text}

the maximum of 12 marks one who is deteriorating rapidly 0 and one who is stationary 6. The difficulties of measurement make this assessment only an approximate one but experience with the method persuades the observer that it is of unexpected value in practice. To put it bluntly, a patient who maintains an MCV of
Carcinoma of the Breast

9, month after month is one who would be described as "responding well to treatment but in whom there is not a complete and ubiquitous regression of the cancerous manifestations", a long sentence and one nicely epitomized by the expression 'MCV = 9'.

The value of having a numerical expression of clinical behaviour can be seen in Fig. 130, which shows the progress of a patient under oestrogen therapy, and in Table X, where the results of treatment of 42 cases under oestrogen therapy expressed as the average MCV are tabulated in a way which puts a value on this form of therapy at sight. Furthermore, for the purpose of relating graphically for instance clinical response to mitotic cell counts and other more abstruse scientific investigations, such a numerical value is a necessity.

Indications. It has been observed in general that patients well past the menopause with soft tissue lesions respond best to oestrogens and young patients with bony metastases respond best to androgens, but there are so many exceptions to this rule, both of a disappointing and of an unexpectedly satisfactory nature that no laws can be laid down and while it is customary to exploit this observation in choosing the hormone to be administered in the first instance, much more work is necessary before we can formulate more exact rules.

For patients who fall into neither of the above categories the prognosis in regard to hormone therapy is not so good, but this treatment is nevertheless worth a trial in cases too far advanced for other forms of therapy, and it would be a hollow sham to pretend that in such cases the choice of hormone for trial is more rational than by the spin of a coin.

Dosage and Toxic Effects. We are as yet uncertain as to the optimum dosage of oestrogen in these cases. Most workers give 15 mg of stilboestrol daily for the rest of the patient's life, but smaller doses may prove to be nearly as effective, and some centres claim slightly more satisfactory results and no more toxic manifestations with doses up to 500 mg daily. It is in determining such points that the MCV system universally adopted will prove of much value.

Toxic manifestations are nausea and vomiting, oedema of the extremities, uterine bleeding and hypercalcaemia. Evidence of such may demand a reduction in the dose or a change to a different preparation of which dienoestrol (a quarter as potent weight for weight as stilboestrol) and ethinyl oestradiol (twenty times as potent as stilboestrol) are useful preparations.

Androgens are prescribed as testosterone propionate 50 mg, three times weekly by intramuscular injection or more expensively.
as methyl testosterone by mouth in doses up to 40 mg. daily. Symptoms of virilism or acne may demand that the dose should be reduced.

Results. The results of treatment with oestrogens in an unselected group of 42 patients with soft tissue lesions treated since the application of the M.C.V. principle are set out in Table I. These results are in accord with those of most observers and with our previous observations before the introduction of this system and we may conclude that just under a quarter of such patients are unable to tolerate the drug in any form in a similar proportion the drug is useless, in about a quarter some delaying effect is observed, and in nearly a third the improvement is striking. If oestrogens are going to work, the patient will show some response within eight weeks and it is therefore fruitless to prolong treatment beyond that time if it is doing no good. In those patients who respond, the duration of satisfactory response is usually a little over a year, and a typical course is shown in Fig. 130. Sometimes, however, this effect may be prolonged indefinitely and Fig. 131 shows a patient whose treatment began in 1949 and who is perfectly well four years later without any clinical evidence of extension.

The results of androgen treatment are more difficult to assess because the effects are largely subjective. In the majority of patients with widespread bony metastases there is an improvement in a sense of well being and a relief of pain. In a small proportion too there is clinical and radiological evidence of regression of the bone secondaries which undergo recalcification. Unfortunately,
these effects are usually short lived and, whether it be because this hormone has a less prolonged effect than oestrogens or because the younger patients with skeletal metastases in whom these preparations are usually employed tend naturally to progress more rapidly, androgens have not the same reputation as oestrogens for sustained benefit.

Finally we may remark that the bald narration of the effect of these preparations disguises a tale the unfolding of which may in

Fig 131 The effect of oestrogen therapy on advanced cancer of the breast

the future lead to startling advances in our knowledge of cancer as a whole. For the first time in history, the prescription of substances natural to the body and of relatively low toxicity has been shown to modify the behaviour of malignant growth. With our present weapons—surgery and radiotherapy—we may do so much and as these are all or nearly all that we possess we struggle to apply them in the most effective way. It would seem however that the limits of their value may have been reached and researchers are turning increasingly to the investigation of other weapons claiming for their field of scrutiny that ancient association of the soil and the seed. We wish in fact to know how the hormones modify the
environment so as to enable it to survive at the expense of parasites, we wish to identify pin down and study all the various factors if there be such so that ideally this temperate system may be destroyed.

References

Bittner L L 1977 J Hered 68 373
Bloom H J C 1966 Brit J Disg 21 1

Boll W 1916 Oecologia 16 1
Gross L McCarty K S 1914 J Hered 5 13

Handley R S 1921 J Parasitol 17 225

Handley R S 1929 By personal communication

McWhorter R 1948 J Hered 41 129

Park W W McIlheny L 1941 J Hered 32 141

Smith R W 1942 J Hered 33 306

Urban J A 1926 J Hered 17 82

Walker A L and Ebeling F 1943 J Hered 34 162

Wangensteen O H 1929 By personal communication
PART VII—THE ENDOCRINE GLANDS

CHAPTER XXXIII

THE THYMUS

GEOFFREY L. KEYNES

THYMECTOMY FOR MYASTHENIA GRAVIS

Current interest in the surgery of the thymus gland received its first stimulus from the work of Blalock at Baltimore. He had successfully removed a thymic neoplasm from a myasthenic patient in 1936 and in 1941 reported on the effect of the removal of apparently normal thymus glands from six myasthenic patients. Most of these patients had appeared to benefit and it was on this basis that the writer performed the first thymectomy done in Great Britain in 1942, at New End Hospital, Hampstead. The patient was a woman of thirty-two in an advanced state of myasthenia gravis and it was believed that she would soon die if nothing was done to help her. The operation proved successful and the patient making a complete recovery from the symptoms of myasthenia and she has now remained free of symptoms for over ten years. Encouraged by this remarkable result in an apparently moribund patient the writer has operated on 250 myasthenic patients during the last ten years and several other operators have followed suit so that the number of thymectomies performed in Great Britain since 1942 must number well over 300. Extended experience has shown that 65 per cent of myasthenic patients (apart from those with thymic neoplasms) can be quite or almost quite relieved of their symptoms by thymectomy, a fact which seems to justify the inclusion of thymectomy among the recent advances in surgery. Previously the symptoms of myasthenia could be palliated by the use of neostigmin (prostigmine) but otherwise the patients could only be offered the rather remote chance of a spontaneous remission. Such remissions certainly do occur but they usually last only a short time if the symptoms have been pronounced and the general rule is slow progression with increasing disability often ending in death from respiratory infections. It must be emphasized that in the writer's experience favourable results from thymectomy are only to be expected in those patients who did not have any kind of
neoplasm in their thymus glands. It has been found that about 12 per cent of patients with myasthenia gravis have a neoplasm or thymoma in the anterior mediastinum and that primary removal of these tumours has given exceedingly bad results, nearly all the patients having died within a short time from severe relapse of symptoms sometimes with respiratory paralysis. Very much better results have been obtained by first exposing the tumours to irradiation with high voltage X-rays the thymectomy being done two or three months later when the skin reaction has subsided. It is of great importance therefore, to diagnose the presence of a thymoma before any operation is undertaken and this can usually be done by careful X-ray examination of the anterior mediastinum, assisted by tomography. The true lateral view of the mediastinum is more likely to show the tumour than the antero posterior view in which the tumour will only be seen if it is large enough to overlap the shadow of the ascending aorta and pericardium. Thymomas commonly lie on the upper part of the pericardium and the root of the aorta and become closely adherent to the adjacent pleural and pericardial membranes. Their removal is usually possible unless the root of the lung has been enveloped by the growth. The pathology of these tumours is still doubtful but they certainly present most of the features of malignancy though they seldom or

![Fig 132 True lateral view of anterior mediastinum with shadow of thymoma before irradiation and similar view afterwards showing reduction in size of tumour](image-url)
never metastasize to lymph nodes, nor to other parts of the body by the bloodstream.

The surgery of the thymus is mainly concerned therefore with the extirpation of the apparently normal gland. It has no known normal function and its removal even from young children has not been found to produce any undesirable side effects. As age advances the gland becomes more and more fatty but a considerable amount of the characteristic lymphoid tissue with epithelial elements in the shape of reticular cells and Hassel's corpuscles (both from the third branchial complex) can still be found up to and even after the age of fifty. Most thymus glands from myasthenic patients also show conspicuous 'germinal centres' though the meaning of this particular form of hyperplasia is quite unknown.

The selection of patients for thymectomy is not easy though it is quite plain that there can be no such thing as an 'emergency operation' for a patient with myasthenia gravis. If the disease is in an acute phase the operation will almost certainly be fatal. The symptoms tend to vary in severity and a remission must be awaited before the operation is seriously considered. At the other end of the scale are those patients whose symptoms are mild so that they can manage to exist in reasonable comfort with the help
of neostigmin. Operation for them is clearly not urgent, but myasthenia gravis tends to be on the whole a slowly progressive disease so that there are good reasons for carrying out the treatment while the risk of postoperative death is virtually nil—in addition to the fact that the results become somewhat less good the longer the disease has been established. The most obviously suitable patient is the one with moderately severe symptoms of myasthenia and a history of not more than five years. Among such patients a high proportion of good results is to be expected with a very low rate of mortality and morbidity. Results are nevertheless erratic and every patient must be warned that no improvement can be guaranteed. Very few however will be deterred by this warning their lives even with the help of neostigmin, being so miserable that they will face anything offering a good chance of recovery. Myasthenia gravis occurs at all ages from infancy to old age but most patients come within the limits of fifteen to forty. Age does not seem materially to affect the results except in so far as the older patients are likely to have had the disease longer and are more liable to postoperative complications, such as respiratory infections.

The anatomy of the thymus gland is unfamiliar to most students, since it disintegrates soon after death and is usually not identifiable in dissecting room bodies. Also the bodies are usually those of elderly subjects in whom the gland is likely to have been largely replaced by fat. Nevertheless the thymus does not atrophy so soon as has been commonly supposed. It is a solid bilobed structure easily identifiable up to the age of forty or over. By the age of fifty it is certainly much reduced, though even then it can still be dissected out with precision and removed in its entirety. Each lobe is elongated with a slender cornu extending up in the neck to the thyroid isthmus and with a thick body lying in front of the inferior thyroid veins the left innominate vein and the aorta to end on the upper part of the pericardium. Each body is covered by the pleura of its own side and so is in close proximity to the lung. The thymus is supplied by two or three fine branches on each side from the internal mammary arteries, and is drained posteriorly by two veins which commonly unite to form the large thymic vein emptying directly into the left innominate vessel. The thymus gland thus lies medially behind the manubrium and body of the sternum and is best approached by splitting the sternum down the centre line. The skin incision is T shaped, the horizontal limb being a short collar incision just above the suprasternal notch and the vertical limb extending in the midline almost to the
When the pretracheal muscles have been separated just above the sternum a finger is introduced into the anterior mediastinum in order to clear the space behind the bone. The sternum may conveniently be split by sawing through the outer table with a Hey's saw and then by cutting with a Sauerbruch's sternum splitter. If the division be carried almost to the lower end of the bone the two halves can be forced apart by introducing a strong, self-retaining retractor so giving free access to the whole of the anterior mediastinum. Loose connective tissue is divided in the midline to expose the capsule of the thymus gland and the pleural membrane is carefully peeled off the surface of each lobe great care being used to avoid puncturing the pleura. Each cornu is followed up into the neck and the lower part of each body which usually spreads out in a thin sheet, is detached from the pericardium. All vessels are divided and ligatured and the gland is removed. It usually weighs 12–15 gm but varies greatly in size and may weigh as much as 30 gm or even more. The size seems to have little relation to the severity of the disease. When the gland has been removed the mediastinum is closed without drainage. The edges of the two halves of the sternum can be accurately approximated by
lifting the patient's shoulders forward and are sutured with a few knots of strong catgut passing through the edges of the bone, which have been drilled with a slender bradawl. The muscles and periosteum are sutured over these knots the subcutaneous fat and skin being closed in two layers. Dressings are applied in such a way as not to interfere at all with respiratory movements. Before the operation the patient should have been receiving neostigmin by the mouth up to the limit of tolerance. At the conclusion of the operation an intramuscular injection of neostigmin is given if the symptoms of myasthenia were severe, so that there may be no weakening of the respiratory movements or cough reflex. The anesthetic should be designed to avoid all irritation of the trachea, and an endotracheal tube is therefore undesirable. After pentothal induction, cyclopropane and oxygen is given through an accurately fitting mask and a large airway so that the movements of the lungs can be completely controlled. Should the pleura be accidentally punctured during the operation the lung can be kept inflated and a postoperative pneumothorax perhaps avoided. Should this develop it is usually best to allow the lung to expand spontaneously though, if there is fluid in the pleura as well, aspiration should be done as often as may be necessary. This complication usually does not arise but it can be dangerous if accompanied by any degree of bronchitis or pneumonitis. Penicillin and increased dosage of neostigmin must then be given, the latter being taken by the mouth as soon as the patient is able to swallow. The myasthenic patient is liable to react to any disturbance by becoming more myasthenic and the symptoms are always accentuated by any infection, even if it be only an ordinary cold. In many instances the patients seem to be almost completely unaffected by the operation, in others the reaction may be so severe that complete respiratory paralysis follows. One patient was only kept alive for two spells each of several hours during the immediate postoperative period, by being put in an iron lung though she was destined within a few weeks to become completely symptom free and to abandon the use of neostigmin.

Myasthenia gravis is an exceedingly erratic disease in its manifestations its course and its response to treatment. This characteristic has discouraged some operators from pursuing thymectomy as a form of treatment because they disliked the impossibility of predicting what the result would be. It has even led to so pessimistic an attitude in some American writers that statements have been made to the effect that operation does not influence the course of the disease, and even that the thymus gland
When the pretracheal muscles have been separated just above the sternum a finger is introduced into the anterior mediastinum in order to clear the space behind the bone. The sternum may conveniently be split by sawing through the outer table with a Hev's saw and then by cutting with a Sauerbruch's sternum splitter. If the division be carried almost to the lower end of the bone the two halves can be forced apart by introducing a strong self-retaining retractor so giving free access to the whole of the anterior mediastinum. Loose connective tissue is divided in the midline to expose the capsule of the thymus gland and the pleural membrane is carefully peeled off the surface of each lobe, great care being used to avoid puncturing the pleura. Each cornu is followed up into the neck and the lower part of each body, which usually spreads out in a thin sheet is detached from the pericardium. All vessels are divided and ligatured and the gland is removed. It usually weighs 12-15 gm but varies greatly in size and may weigh as much as 30 gm or even more. The size seems to have little relation to the severity of the disease. When the gland has been removed the mediastinum is closed without drainage. The edges of the two halves of the sternum can be accurately approximated by
already mentioned. Attention should instead be focused on the many sufferers from myasthenia gravis who have no obvious gross disease in the thymus but most of whom will nevertheless benefit by surgical extirpation of the thymus gland.

The status of the thymus as an endocrine gland has been recently confirmed by the researches of Professor Andrew Wilson of Liverpool University. He has succeeded in preparing an active extract of thymus glands removed from myasthenic patients which is capable of consistently damping down the contractions of a muscle nerve preparation in a degree comparable with the effect of tubocurarine chloride. The potency of the extract is found to be closely correlated with the clinical effect of the removal of the glands extracted. The operation of thyrectomy is thus given a biochemical basis in addition to that provided by clinical observation of results.

References

BLAOCK A 1941 Amer J Surg 54 140
KELFS G 1940 Brit J Surg 33 201
KEIDES C 1949 Brit Med J ii 611
ROSS R T 1942 Lancet ii 783
WILSON A 1942 Chirurg Med J 33 791
WILSON A et al 1943 Lancet ii 708

For details of technique see Techniques in British Surgery ed Maingot 1950 London W B Saunders Co p 126
is not really concerned in its production. It is difficult to understand how this view can be maintained in view of the consistently favourable results that have been obtained in this country. All the patients operated on have been carefully reviewed at intervals. Although improvement after operation may be rapid or very gradual, the fact remains that 90 per cent of the patients do improve. Of these 90 over 30 are apparently cured and have remained free from symptoms for periods up to more than ten years. Another 30 or more are so much better that they are able to lead normal lives, and can return to their former occupations. The remaining 25 per cent are better, but still need the help of a considerable amount of neostigmin and are liable to relapse whenever they have any infective illness. Of the 10 per cent who are not improved at all, some have probably been misdiagnosed some forms of myopathy being very difficult to distinguish from myasthenia gravis. This favourable view of the effect of thymectomy upon myasthenia gravis has been subjected to close scrutiny by physicians interested in the problem and the results in 100 unselected patients have been statistically analysed by Dr. R. T. Ross working at the National Hospital for Nervous Diseases, Queen Square. The average period that had elapsed since operation was four and a half years and it was found that 87 patients had benefited from the treatment. Of these 41 appeared to be quite cured and 26 had only inconstant and minor symptoms of myasthenia. An excellent result could therefore be claimed in 67 of the 100 patients examined. No comparable results have ever been obtained in any series of patients treated medically.

It must be again emphasized that these figures do not include any patients who had a thymoma in association with myasthenia. The presence of a neoplasm has been regarded as a different problem demanding a different approach and has been found to indicate an exceedingly bad prognosis. The disease is often more rapid in its onset and severe in its manifestations. Primary operation as already stated has been found almost useless but removal has been more successful after preliminary radiotherapy. The removal of a thymoma is often a much more difficult operation than an ordinary thymectomy and introduces greater hazards since it may be impossible to avoid opening one or both pleural cavities. The presence of a thymoma stimulates the formation of dense fibrous tissue in its neighbourhood with adhesions to neighbouring structures so that its removal may sometimes prove to be impossible. It is possible that selection of patients with thymomas for operation with the many inevitable failures has produced the pessimistic view.
PREPARATION FOR THYROIDECTOMY

depressed. The localized area of increased activity can be discovered by scanning the patient's neck with a directional Geiger Müller counter after a dose of radionuclide and the treatment consists of the surgical enucleation of the offending hot nodule.

Other Indications for Surgery When a hyperthyroid patient under treatment with thionuracil develops agranulocytosis, the drug is stopped; massive doses of penicillin are given and one or more transfusions of fresh blood. As soon as the granulocytes regain their normal level, a course of Lugol's iodine is given and thyroidectomy is carried out.

Occasionally a toxic goitre is so large that it is an embarrassment to the patient and pressure on the trachea makes it necessary for her to sleep propped up with pillows. Although thionuracil may render such a gland non-toxic thyroidectomy is called for on mechanical grounds. For like reasons a retrosternal goitre will require removal.

Finally, when a patient who lives far removed from medical care develops hyperthyroidism, it is advisable to proceed to thyroidectomy after suitable preparation. It is unsafe to carry out long term thiouracil therapy in such a person for agranulocytosis can occur at any time and on any dosage and such a complication then makes hospital treatment an urgent necessity.

Thyroidectomy In carefully prepared patients this operation is now safe and the mortality is a fraction of 1 per cent. The superior thyroid vessels and middle thyroid veins are divided, the inferior thyroid arteries ligated in continuity and about seven eighths of each lobe removed. The recurrence rate of hyperthyroidism after this form of subtotal thyroidectomy is very low. Identification of the recurrent laryngeal nerves at operation reduces the number of paralysed vocal cords to less than 1 per cent, and the careful preservation of at least one parathyroid prevents post operative tetany.

Preparation for operation is conveniently planned by giving methyl thionuracil 0.2 gm and 1 thyroxine 0.1 mgm three times a day for six weeks and continuing if necessary with half this dose of methyl thionuracil until the patient is euthyroid (i.e. of normal thyroid function). If the gland feels soft it can be further prepared by giving 5 minims Lugol's iodine three times a day in the two weeks before operation and it is unnecessary and undesirable to stop giving the thionuracil at the same time. Lugol's solution has no special merit for all forms of iodine are equally effective. A daily pill containing 3 grains of potassium iodide will provide more than the patient's requirements. Excellent preparation is also afforded
CHAPTER XXIV

THE THYROID AND PARATHYROIDS

SELWYN TAYLOR

HYPERTHYROIDISM

The opening of the atomic pile at Harwell has ensured a regular and inexpensive supply of radioactive iodine in England so that there now exist three alternative methods of controlling hyperthyroidism: subtotal thyroidectomy, prolonged treatment with thiouracil, and therapy with radioiodine. The indications for using these different forms of treatment are now emerging, together with much new knowledge about the physiology and pathology of the thyroid.

Indications for Surgery in Hyperthyroidism

Toxic Nodular Goitre. Means of Boston has stressed how helpful it is to distinguish between hyperthyroidism occurring in the diffusely enlarged thyroid (Graves' disease) and that associated with a nodular gland. Toxic nodular goitre occurs typically in an older age group. The patient has usually harboured an enlarged thyroid for many years and the onset of symptoms is often insidious. Eye changes are frequently absent and there may be no nervousness. The brunt of the toxic changes falls on the heart and the patient may present with auricular fibrillation and heart failure.

The presence of a toxic nodular goitre is an absolute indication for thyroidectomy if the patient is fit enough or can be made so for operation. The reason is that this form of hyperthyroidism is much more resistant to thiouracil and radioiodine than is Graves disease. Thiouracil is useful for preoperative preparation as described below but has to be given in full doses and for a long time and such a dosage would be unsuitable for indefinitely prolonged therapy.

Cope has drawn attention to the solitary toxic nodule, a condition first described by Plummer but the existence of which has only recently been confirmed by radioiodine studies. When a single nodule in the gland is hyperactive (the 'hot nodule' of American authors) the function of the remainder of the thyroid tissue is usually
Indications for Radioiodine in Hyperthyroidism

There are many radioactive isotopes of stable iodine but the one in almost universal use to day is ^{131}I. It is prepared in this country by the neutron irradiation of metallic tellurium in the chain-reacting pile at Harwell. ^{131}I has been chosen because it gives off the larger part of its energy in β rays and only a small part as γ rays. The β rays exert intense ionization on the tissues but have a range of only a few millimetres and since this isotope is concentrated by the thyroid in the same way as stable iodine it is possible to subject the gland to far greater doses of irradiation than can be administered by external irradiation (β ray therapy or radium) which must traverse the skin. The rays are much more penetrating and can be detected outside the body by means of a Geiger-Müller counter and thus enables the isotope to be 'traced' in the body and its concentration in the thyroid or other tissues recorded. In addition ^{131}I has a half life of eight days which means that it decays to half its original strength in that period and there is therefore plenty of time to convey it to the patient.

The advantages of ^{131}I therapy in hyperthyroidism are obvious. The patient is spared a surgical operation and anaesthetic. There is no risk of injury to the recurrent laryngeal nerves or to the parathyroids. There is no immediate reaction to the treatment, which exerts its effect gradually over several weeks so that the maximum benefit is seen in two to three months.

The disadvantages of this form of therapy are twofold. First it is difficult to calculate the required dose because this depends primarily on the number of grams of thyroid tissue present in the patient's neck and even the most experienced clinician finds this difficult to assess. Over dosage leads to hypothyroidism and the patient has to take thyroid or thyroxin daily. Under dosage means that the treatment will have to be repeated. We have found a dose of 150 microcuries per estimated gram of thyroid tissue satisfactory. The second disadvantage is the risk of malignant change in the thyroid at some future date as a result of the intense radiation it receives. In the early days of roentgen therapy many patients were overtreated and subsequently developed cancerous changes in the skin, sometimes after the lapse of twenty years. Whether ^{131}I therapy for hyperthyroidism produces thyroid cancer will not be known for at least another ten years. In the experimental animal thyroid cancer has been produced by ^{131}I given alone or with prolonged thiouracil feeding but it would be unwise to draw any conclusions therefrom at present.
by giving Neo Mercazole 10 mgm three times a day for six weeks and then adding Lugol’s iodine during the last two weeks before operation.

With such preparation the patient arrives at operation completely relieved of hyperthyroidism and no special form of pre operative medication or post operative management is necessary.

Indications for Thioauracil Therapy in Hyperthyroidism

Thioauracil, which in this country is usually given in the form of methyl thioauracil, prevents the thyroid gland from manufacturing thyroxin. It will thus render a patient non toxic, but in so doing the thyroid usually becomes larger and more vascular because the anterior pituitary is no longer inhibited by the presence of circulating thyroxin. The patient is given 0.1 to 0.2 gm three times a day and the symptoms are markedly relieved in one or two weeks, the improvement continuing until in six to twelve weeks the patient is euthyroid. It is possible then to reduce the dosage to 0.05 to 0.1 gm per day by mouth and continue it indefinitely. Poute of Sydney has given thyroid sicca with the thioauracil in long term therapy in order to minimize the increase in size and vascularity of the gland and on stopping the therapy after one to two years has obtained many remissions. Others have remarked on the high incidence of recurrence after the drug has been stopped. Although there are not enough comparable figures to give a definite assessment of this type of treatment probably not more than 40 per cent remain cured after one year.

The disadvantages of prolonged thioauracil therapy are that some patients develop toxic reactions to the drug, the commonest being a skin rash and the most serious agranulocytosis. The latter has accounted for most of the deaths from thioauracil. Its incidence has varied widely in different clinics but need not be more than 2 per cent.

Propyl thioauracil has been widely used in the United States but this may have been due to its superiority over methyl thioauracil during its experimental trials in rats. In man propyl is not as effective in equal doses as methyl thioauracil and with the increased doses necessary toxic reactions are about as common. The combination of iodine with the thioauracil molecule in the form of diiodo thioauracil (Itrumil) has found favour with some but in our hands appears to be of less value than iodine and thioauracil used separately. An extremely powerful anti thyroid drug, mercapto-metazol (Neo Mercazole) is now past its trial stage. It is likely that other more potent and less toxic substances of this kind will be discovered in the future.
selected because of the suspicion of malignancy. It is therefore misleading to say that 10 per cent of these non-toxic nodular goitres were malignant. What is true is that 10 per cent of the nodular goitres excised were malignant.

<table>
<thead>
<tr>
<th>Author</th>
<th>Single Nodules</th>
<th>Multiple Nodules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warren Cole et al (1945) Chicago</td>
<td>24.0</td>
<td>17.1</td>
</tr>
<tr>
<td>Warren Cole et al (1949)</td>
<td>24.4</td>
<td>17.1</td>
</tr>
<tr>
<td>Crie, G., Jun (1949) Cleveland</td>
<td>24.7</td>
<td>10.9</td>
</tr>
</tbody>
</table>

It is therefore important to know what are the indications that should lead to the suspicion of malignancy in a nodular goitre for it is clearly impossible and undesirable to recommend thyroidectomy for all enlarged thyroid glands. In order to do this it is necessary to understand the difficult problem of the pathology of malignancy. That so many different classifications exist is good evidence that none is wholly satisfactory.

Pathology

It is convenient to consider thyroid cancer under two headings, papillary carcinoma and non-papillary carcinoma. Papillary cancer accounts for between one third and one half of all malignant thyroids. It may occur at any age and it shows a tendency to appear in the younger age group being invariably the variety seen in childhood. It is often a slowly growing tumour and there are records of patients who have harboured such a cancer for thirty years with little increase in its size. It has a predilection for spreading by lymphatics, and this accounts for the previous concept that lateral aberrant thyroid tissue might be found in the neck. Such tissue results from the spread of a highly differentiated papillary tumour into a cervical lymph node, and a careful search in the lobe of the thyroid on the same side of the neck will reveal the primary. Occasionally the primary tumour is minute—the so-called occult carcinoma of thyroid.

Non-papillary cancer can be subdivided into groups according to its histological appearance:

(a) Adenocarcinoma with colloid formation reproducing fairly faithfully the parent gland.
It must also be stressed that radioiodine therapy can only be carried out in certain hospitals because it requires the co-operation of a physician, surgeon and physicist who are conversant with the techniques involved. In addition, much expensive and elaborate equipment for measurement and careful safeguards to prevent irradiation hazards to the nursing staff are necessary.

Briefly, 131I therapy should at present be reserved for patients whose expectation of life is less than twenty years, for those who have had one or more thyroidectomies especially if a recurrent laryngeal nerve has been damaged, and for those who have such severe cardiovascular disease that they are unsuitable for a surgical operation. Finally, it is suitable for those with severe exophthalmos especially if associated with ophthalmoplegia since a gradual reduction in the hyperthyroidism is less likely to lead to worsening of the eye changes. It should not be contemplated in young patients or those with toxic nodular goitre.

CANCER OF THE THYROID

Thyroid cancer is not common in England and Wales. The Registrar General’s returns for 1943-47 attributed 1481 deaths to it, or approximately 300 deaths per annum. Pathologists have for long found the diagnosis of malignancy in the thyroid a difficult task, as the existence of such self-contradictory terms as benign metastasizing goitre testifies.

Cancer in Nodular Goitre

In 1945 two articles were published from clinics in Chicago (Warren Cole) and New York (Hinton and Lord) recording an incidence of 7 to 17 per cent cancer in non-toxic nodular goitre. A five-year follow-up published later stated that many of the Chicago patients were already dead of malignant disease so that there could be little doubt of the correctness of the diagnosis. There followed throughout the world a quickening of interest in the incidence of malignancy in thyroid nodules. This incidence was claimed to be minimal by such workers as Van der Laan who based their figures on the post-mortem records of two large hospitals. Since many with thyroid cancer go home to die, their estimate was almost certainly too low. On the other hand, the surprisingly high incidence reported by the Chicago workers might in part be due to their being in an area of endemic goitre. In such areas, many of the population have nodular goitres and thyroidectomy is only performed on the most carefully selected patients—who are often
mastoid muscles and the jugular vein. Such a course of action will
be preferable to having to return to a scarred neck at a later date,
to remove further nodes. A history of extremely slow growth
probably justifies the less radical excision.

Non papillary carcinoma may present in a variety of ways. At
one extreme the diagnosis of malignancy is not even suspected and
a non-toxic, or very rarely a toxic nodular goitre is excised, the
pathologist subsequently reporting an early cancerous change. At
the other extreme a patient, who has had a goitre for many years,
seeks medical advice because of rapid enlargement of the neck with
pressure symptoms. Compression of the trachea may necessitate
tracheotomy and the patient may die within a few weeks.

The treatment of a patient with a malignant goitre should be
guided by certain clearly defined principles. As soon as the diag-
nosis of malignancy has been confirmed at operation an attempt
should be made to perform total thyroidectomy. If successful this
serves two purposes—the removal of the primary growth, and the
removal of all normal functioning thyroid tissue. The latter is of
value in that in some patients the anterior pituitary may then
stimulate metastases to take on the production of thyroxin, thus
making them accessible to treatment by radioactive iodine. Total
thyroidectomy in a patient whose thyroid is enlarged and distorted
by carcinoma can be a formidable undertaking. Moreover, it is
essential to preserve at least one recurrent laryngeal nerve and one
or more of the parathyroids. For these reasons radical excision
may have to be confined to one side of the neck. Pretracheal muscles
and one internal jugular vein may be sacrificed together with all
the involved tissue that is removable. The tumour may have to
be shed off the trachea. When necessary, the operation is completed
by performing a tracheotomy. Attempts have been made recently
to resect part of the trachea and replace its walls by tantalum gauze
and fascia. Two weeks later a block dissection of the lymphatic
drainage is made on the side of the neck primarily involved if it has
not been possible to do this at the original operation. It may be
necessary to repeat this on the opposite side if the tumour is exten-
sive and involving the isthmus or contralateral lobe.

When a patient who has had a slowly progressing tumour for years
finally presents for treatment because of difficulty in breathing, it
is advisable to resect as much of the tumour as possible before
starting radiotherapy.

There is a rare form of anaplastic thyroid neoplasm which
produces a rapidly enlarging tumour with a smooth surface. Histo-
logically the cells resemble a sarcoma or completely undifferentiated
(b) Adenocarcinoma without colloid formation and less differentiated than the foregoing

(c) Carcinoma simplex, a solid tumour with varying degrees of differentiation

In practice every degree of differentiation is seen from a tumour which is only distinguishable from normal thyroid tissue by its powers of spread outside the capsule of the gland. Such a tumour may produce a distant metastasis in bone from which biopsy appearances are those of normal thyroid tissue. At the other end of the scale is the rapidly growing solid tumour indistinguishable histologically from a sarcoma. One further variety the Hurthle cell tumour is of particular interest to the pathologist. Hurthle cells which are large pink granular cells are often seen in the thyroid especially in Hashimoto's disease. A Hurthle cell carcinoma is typically made up of these large cells surrounding small follicles.

Diagnosis

When a solitary nodule is palpated in the thyroid of a young person the diagnosis of papillary carcinoma should be entertained until proved otherwise by a surgical excision which should include a generous amount of paranodular tissue. The younger the patient the more likely is the nodule to be malignant. In multinodular goitres the risk of a malignant change is low unless the gland has recently undergone rapid enlargement and the nodules feel hard or dysphagia or the patient has the impression that all is not well in her neck. Hoarseness due to involvement of a recurrent laryngeal nerve is pathognomonic of malignancy.

Treatment of Thyroid Cancer

Surgery. The most important treatment for every patient with carcinoma of the thyroid is a surgical operation but the form which that operation should take must be decided by the variety and extent of the tumour.

Papillary carcinoma may be diagnosed on the operating table when a lymph node excised from the neck is found to contain metastatic thyroid tissue. If the disease is confined to one side of the neck it suffices to perform a hemi thyroidectomy and remove all apparently involved lymph nodes. Since these patients are often young girls more mutilating operations are not usually justified. If the tumour has crossed the midline a generous part of the contralateral thyroid lobe should be excised. When many lymph nodes are involved it will be advisable to proceed at once to a formal block dissection of the neck removing the infrahyoid and sterno
tous, or is only hypothyroid for a few months, and then returns to a euthyroid condition. This is because the metastases are now manufacturing enough thyroxin for the patient's requirements. Such a patient is usually well suited for radionuclide therapy.

The practice of giving patients with carcinoma of the thyroid a tracer dose of radionuclide to see if the tumour or its metastases take up significant amounts is of little if any value. It gives no indication of how the metastases will behave after the normal thyroid tissue has been removed.

In order to stimulate still further the metastases to take on function methyl thioauracil in large doses can be given (0·6 gm to

\[\text{Fig 13a} \quad \text{See text} \]

2·0 gm per diem) for two to three months. The drug is then stopped and after two days an increase in iodine uptake is likely. The thioauracil appears to produce changes in the metastases comparable to those in the normal thyroid i.e., disappearance of colloid, increase of acinar cell height, and increase in vascularity and overall size of tissue. The use of TSH by injection is of little use for it cannot be obtained in a pure state at the present time.

When the iodine uptake in the patient's metastases has been developed to the maximum the therapeutic dose of 131I is given by mouth after a brief fast. The concentration of the radioactive material in the secondary deposits can be gauged by placing a Geiger counter over them and the total uptake is determined by
carcinoma These tumours are radio sensitive and respond favourably to a course of radiotherapy. They usually recur fairly rapidly in other parts of the body, but the patient is spared death due to obstruction of the trachea.

X-Ray Therapy X-ray therapy is most valuable when used for the anaplastic type of thyroid carcinoma. These quickly growing tumours appear to melt away if given intensive irradiation of the order of 4,000 roentgen to the neck and upper mediastinum. When they recur, it is usually in the form of metastases in the lung and liver.

Radiotherapy may be used as an adjunct to surgery where there has been incomplete removal of an infiltrating tumour. Conversely, surgery may be a useful adjunct to radiotherapy. The presenting part of the tumour is excised and a tracheotomy performed as a prelude to radiotherapy in patients who are brought to hospital at a late stage of the disease.

Occasionally a solitary lung deposit causes troublesome haemoptysis and then palliative irradiation of 2,000 roentgen given to the secondary over ten days is worth while.

Radioiodine Radioiodine is only of value in the treatment of metastatic deposits and can only be used if the tumour cells take up enough of the isotope to irradiate themselves adequately. Since less than 50 per cent of thyroid carcinomas take up appreciable amounts of iodine, the applications of this form of therapy are limited.

A thyroid metastasis even when well differentiated never takes up iodine as well as the normal thyroid gland. For this reason, it is first necessary to remove all normal thyroid tissue so that it no longer competes for the radioactive iodine. The most satisfactory method of ablating the thyroid gland is to perform the operation of total thyroidectomy. When the patient is too frail for this, or there is much scarring in the neck from previous operations, it may be preferable to destroy the normal thyroid with a large therapeutic dose of radioiodine.

After total thyroidectomy there is a reduction in circulating thyroxin. This reduction leads to increased activity of the anterior pituitary especially the basophil cells which are responsible for manufacturing thyroid stimulating hormone TSH. Reference to the accompanying diagram will make this clear. The increased output of TSH by the pituitary induces cells in the thyroid metastases to manufacture thyroxin for which purpose iodine is taken up from the bloodstream. Occasionally after total thyroidec- tomy for thyroid cancer the patient does not become myxoedema.
(normal level 3.2 mgm per 100 c c of blood plus or minus 0.5 mgm) accompanied by an elevation of the serum calcium (normal level 10.0 mgm per 100 c c of blood plus or minus 1.0 mgm) with the excretion of calcium in the urine. This is accompanied by decalcification of the skeleton. The condition is commoner in females than males and the pathological finding is usually an adenoma of one parathyroid gland. In about 10 per cent there are two adenomata. In some 10 per cent there is hypertrophy or hyperplasia of all four parathyroids with no adenoma formation. Carcinoma of these glands is rare.

The clinical findings fall naturally into three groups: (1) bone disease; (2) urinary tract disease; (3) symptoms due to hypercalcemia.

(1) Bone disease may not occur in hyperparathyroidism if the patient drinks plenty of milk. When it does occur it is called von Recklinghausen's osteitis fibrosa cystica, though there is considerable doubt as to whether von Recklinghausen did in fact describe this condition. The changes seen are decalcification, cyst formation and tumour-like masses of osteoclasts and fibrous. Cysts occur typically in the jaws (an epulis should always raise the suspicion of a parathyroid tumour), metacarpals and metatarsals. The vertebrae often collapse causing a decrease in height which may be further accentuated by bowing of the femora. Crush fractures of thoracic vertebrae may lead to a pigeon breast deformity. Pathological fractures are common and a biopsy finding of osteoclastoma in such circumstances may deceive the surgeon until generalized skeletal changes are discovered at a later date. Bone pains are common and backache one of the earliest complaints.

(2) In the urinary tract the commonest finding is a calculus. Many patients with hyperparathyroidism are discovered in the genito-urinary department because they present with recurring renal tract stones. In addition there may be polyuria accompanied by polydipsia. In the later stages of the disease, nephrocalcinosis, i.e., calcification mainly in the tubules of the kidney, leads ultimately to renal failure. It is occasionally visible as calcified streaks in X rays of the kidneys.

(3) The raised serum calcium is accompanied by hypotonicity of the skeletal muscles. The ECG may show a decreased Q-T interval. Calcium may be deposited in many tissues, and in the eye can be recognized as a band keratitis.

Operation The first exploration of the neck for a parathyroid tumour offers the best opportunity for finding it and should therefore be planned with care and carried out in an unburnt and
measuring the amount excreted in the urine and subtracting it from the dose given. We have so far only been able to treat thyroid metastases in this way in very few patients. Life has been prolonged but in none has the disease been completely destroyed.

To summarize the most important form of treatment for thyroid cancer is still a radical surgical excision. For anaplastic tumours radiotherapy is most useful. For well differentiated tumours which have metastasized it is sometimes possible to treat the secondaries with radioiodine.

References

Thyroid

Monographs

Crile G Jun 1949 Practical Aspects of Thyroid Disease Philadelphia
McGavack T H 1951 The Thyroid St Louis
Means J H 1948 Thyroid and its Diseases 2nd ed Philadelphia

Astwood E B 1943 J Amer Med Ass 122 78
Cope W H Slaughter D P Rossiter L J 1945 Ibid 127 883
Cope W H Majarakis J D Slaughter D P 1949 J Clin Endocrinol 9 1007

Cope O et al 1949 Ibid 9 1012
Dobns B M and Maloof F 1951 Ibid 11 1323
Dontach D 1953 Lancet ii 873
Fraser R and Wilkinson M 1953 Brit Med Jour ii 481
Himsworth H P 1948 Ibid ii 61
Means J H 1951 Bull Johns Hopkins Hosp 89 90
Peate H R G 1953 Lancet i 870
Pochin E E et al 1952 Brit Med Jour ii 1115
Rawson R W Rall J E Peacock W 1951 J Clin Endocrinol 11 1128
Taylor S 1951 Postgrad Med Jour 27 51
Taylor S and Stewart F S 1951 Lancet ii 232

THE PARATHYRIOIDS

The parathyroid glands were discovered by the Swedish anatomist Sandstrom in 1880 and in 1925 Felix Mandl performed the first operation for removal of a parathyroid tumour in a patient with generalized fibrocystic disease of bone. In the same year Collip prepared physiologically active parathormone, and by the early 1930s Sir James Walton in this country and Doctors Churchill and Cope in America had successfully operated on a number of patients with hyperparathyroidism. This then is a disease which in surgical history was only discovered yesterday and is still commonly overlooked to day.

The normal parathyroid glands secrete a hormone which according to Albright regulates the phosphate excreted by the kidney. In hyperparathyroidism there is lowering of the serum phosphorus.
CHAPTER XXI

THE ADRENAS

SILVIA RAY

The surgical treatment of adrenal disorders represents one of the more dramatic recent advances in surgery. Kendall’s work on the identification of adrenal cortical hormones, leading in recent years to a plentiful supply of compound I or cortisone has made such operations relatively safe. A brief outline of the physiology of the adrenals will serve as an introduction to the subject.

Each adrenal gland is composed of an outer yellow cortex and an inner reddish brown medulla. The cortex is essential to life and produces hormones controlling carbohydrate, protein and electrolyte metabolism. The medulla is not essential to life; it produces adrenaline and nor-adrenaline. Destruction of the adrenals leads to Addison’s disease and death, but the patient can be kept alive by the administration of added salt in the diet and desoxyzycorticosterone acetate, DOCA, which is a synthetic cortical salt hormone. In addition, cortisone may be given and leads to a greater sense of well being and corrects any tendency to hypoglycemia. The various pathological states which may require surgical treatment are summarized diagrammatically in Fig. 136.

Disorders of the Adrenal Cortex

1. Cushing’s Syndrome. This term originally referred to a clinical picture (described below) associated with a basophil tumour of the pituitary. Since many of these patients have no pituitary tumour and since they all have either a tumour or hypertrophy of the adrenal cortex, it is convenient to describe them all as Cushing’s Syndrome and to reserve the term Cushing’s Disease for those who also have a pituitary tumour. It is not known whether the pituitary tumour can over stimulate the adrenals and as regards treatment, it is reasonable to disregard the pituitary aspect of Cushing’s Disease.

Cushing’s Syndrome is much commoner in women than men. Clinically there is

1. Great obesity especially of the abdominal wall which shows...
meticulous fashion. The four glands normally lie on the postero lateral surface of the thyroid in relation to the termination of the two superior and two inferior thyroid arteries. The middle thyroid veins will need ligation before each lateral lobe of the thyroid is rolled gently towards the midline. Absolute haemostasis and avoidance of staining of the tissues with blood are essential. The parathyroid glands have a distinctive tan colour, and once one has been identified it is much easier to find the others (just as in birds nesting). If an adenoma is found it is removed in toto. If all four glands are hypertrophied three are excised and about 200 mgm of the fourth left with an intact blood supply. Parathyroids may be found in the anterior or posterior mediastinum or in the substance of the thymus. It is rarely necessary to split the sternum to complete the search.

Post operative care is mainly directed at keeping the serum calcium above the level at which tetany appears. If there has been generalized decalcification of the skeleton this may be difficult for after removing the parathyroid tumour the bones are ‘hungry for calcium’. The only way to slow up this passage of calcium into the bones is by lowering the phosphate intake and thus means avoiding milk and cheese in the diet. Calcium should be given in large doses by mouth and if tetany occurs an immediate intravenous injection of 100 ml of a 10 per cent solution of calcium gluconate or lactate will provide relief. Calciferol (vitamin D) can also be given to maintain the level of serum calcium, but may delay the recalcification of the skeleton. Patients in the immediate post operative period may show strange mental aberrations, becoming testy and unreasonable in their demands on the nursing staff.

References

ALBRIGHT F and REIFENSTEIN E C 1948 Parathyroid Glands and Metabolic Bone Disease Baltimore

CHURCHILL E D and COPE O 1936 Ann Surg 104 9

HUNTER D and TURNBULL H M 1931 Brit J Surg 19 203

NORRIS E H 1937 Carnegie Inst of Wash, Publication No 479 26 247

NORRIS E H 1947 Surg Gynec and Obstet Intern Abstr 84 1

RIENHOF W F Jr 1950 Ann Surg 131 917

Fig 137 Straight X ray after air insufflation showing normal adrenals

Fig 138 Straight X ray after air insufflation. The patient presented with Cushing's syndrome and the X ray shows a tumour of the right adrenal which was subsequently removed
stre, and of the face which becomes moon like. A cervico thoracic fat pad presents a "buffalo" appearance.

(2) A thin skin, a ruddy complexion acne, and an increased susceptibility to bruising.

(3) Muscular weakness.

(4) Diabetes which is mild but resistant to insulin.

ADRENO-GENITAL SYNDROME
1. In utero male produces pseudohermaphrodite.
2. Before puberty produces infant Hercules precocious dwarf.
3. In adults females produce virilism. Occurs rarely in males may be hereditary.
17 Ketosteroids increased in urine.

Increase of androgen and sex hormone

CUSHING'S SYNDROME
Diabetes insipidus resistant
to treatment headaches
Thickened, red, supple, skin obese abdomen
and moon face
Osteoporosis Buffalo shape
17 Ketosteroids often normal
Glucocorticoids increased

Increase of glucocorticoids.

Selye's Alarm reaction

destruction by
Abscess
Haemorrhage
Cure.

Addison's Disease

NEUROBLASTOMA GANGLIONEUROMA
Right-sided Pepper
Left-sided Hutchinson

PHAEOMICTOCYTOMA
May occur out of adrenal
Bilateral (e.g., Norcular cent.) 50-95

Fig 136 Adrenal Dysfunction Diagram showing the more common adrenal disorders.

(5) Osteoporosis especially of the spine.

(6) Amenorrhea or impotence.

(7) Hirsutism with normal or only slightly increased excretion of urinary 17-Ketosteroids. The glucocorticoids are usually relatively increased in the urine.

(8) Hypertension degenerative arterial disease, headache and mild polycythemia.

(9) Mental depression and personality changes.

The diagnosis can sometimes be confirmed by air insufflation and straight X-rays or tomography of the adrenals. Blackwood's perrenal pneumography is excellent for this purpose. With the patient
the other. Thus a bilateral exposure is usually necessary. There
are three surgical approaches to the adrenals. (a) With the patient
lying prone the twelfth rib can be excised subperiosteally and a
good view obtained. If the patient be fit enough both sides can
be explored at the one operation. (b) The adrenals may be
approached across the peritoneal cavity. This is a difficult operation
in an obese female since it is impossible to palpate the adrenals
satisfactorily and they always have to be fully displayed. (c) The
third approach is by the usual loin incision used for nephrectomy
when traction on the kidney will give adequate exposure of the
adrenal. The drawback is that the patient must be turned before
the second side can be operated upon if both are to be explored at
one time.

The results of surgery in Cushing's Syndrome are most encourag-
ing. Now that cortisone is available, the mortality rate has fallen
from about 25 per cent to a low level. For example, sixteen con-
ssecutive patients have recently been operated on at the Mayo
Clinic for subtotal adrenalectomy without a death; the operation
being done in two stages. Patients so treated return in large
measure to normal, but a small number require treatment for
adrenal insufficiency. Where the excision has been too radical or
show a poor response when the excision has been too conservative.
Failure in the past to obtain a good response appears always to have
been the result of not removing enough adrenal tissue.

(2) Adrenogenital Syndrome. This is made up of two factors:
virilism and a disordered nitrogen metabolism leading to great
muscle mass. The cause is either a tumour or bilateral hypertrophy
of the adrenal cortex. The clinical picture varies according as to
whether the excess adrenal secretion occurs in fetal life before
puberty or in the adult.

The effect of the adrenogenital syndrome on a fetus is to produce
a pseudohermaphrodite. Typically a female child is born with a
large clitoris and varying degrees of pseudomasculinity. Such a
baby may be thought to be a male with undescended testes.

In the child before puberty the adrenogenital syndrome produces
sexual precocity in boys and masculinity in girls. There is greatly
increased muscular development, hairiness, deep voice, adult sex
organs in the male and an early fusion of the epiphyses. This is
the so-called infant Hercules.

When an adult woman develops this syndrome she develops a
masculine type of build and appearance, prominent muscles, partial
baldness and amenorrhea. Very rarely a male adult may undergo
a feminizing change.
in the lateral position a lumbar puncture needle is inserted just in front of the coccyx and directed into the presacral hollow. 400 ml of air are injected on each side and X rays are taken after the patient has walked about for twenty minutes (Figs 137-139).

The treatment of Cushing's Syndrome is by the excision of the adrenal tumour when one is present, or subtotal adrenalectomy when there is bilateral hypertrophy of the adrenals. The patient is given 200 mgm of cortisone by intramuscular injection daily for

two days before operation and lesser amounts by mouth for a week post operatively. This is to avoid the nausea, anorexia, and prostration which otherwise accompany a sudden deprivation of adrenal secretions. Adrenocorticotropic hormone (ACTH) may be given subsequently to stimulate the patient's remaining adrenal tissue.

It is often impossible to determine the side of the tumour and if hypertrophy is present it is necessary to expose both adrenals before proceeding to the excision of one and about seven eighths of
injection of a 2 per cent solution of benzodioxanone (piperidyl methyl benzodioxanone) 10 mg/m per square metre of body surface may be used. It is adrenolytic and lowers the blood pressure if the elevation is due to circulating adrenaline. Unfortunately it acts as a pressor in essential hypertension so it is not without risk. Dibenamine (N,N-dibenzyl beta chloroethylamine hydrochloride) given slowly intravenously at the rate of 7 mg/m per kilo body weight is another adrenolytic test, the action is much more prolonged up to twenty-four hours. No pharmacological test for phaeochromocytoma has proved universally successful. At the present time Engel and von Huler's method of estimating the urinary concentrations of adrenaline and noradrenaline appears to be the most reliable aid in the diagnosis of phaeochromocytoma. Unfortunately the method is elaborate and only available in specially equipped laboratories.

The treatment of phaeochromocytoma is the surgical removal of the tumour and this was first successfully accomplished by C. H. Mayo in 1927. The best approach is an anterior one through the abdomen since about 10 per cent of these tumours are multiple and they have also been described lying some way distant from the adrenals, especially in relation to the abdominal aorta.

The greatest gentleness is essential during the operation as handling the tumour leads to severe hypertension. The tumour should not be manipulated until the vascular pedicle has been secured. The commonest cause of death and this operation still carries a high mortality is due to the severe shock like state that may follow the removal of the tumour. This shock may not be reversed even when large amounts of adrenaline are given intravenously. The discovery that many of these tumours contain a high percentage of noradrenaline has resulted in a solution of this substance being given by slow intravenous infusion throughout the operation. As soon as the blood pressure falls the noradrenaline is run in more quickly. For at least twenty-four hours after the operation the infusion is continued very slowly being speeded up as required thus tiding the patient over hypotensive episodes which might otherwise be fatal.

Total Adrenalectomy in Malignant Disease

Total excision of the adrenal glands with maintenance of the individual on daily cortisone can cause some regression of neoplasms, especially cancer of the prostate and cancer of the breast. Cox observed a dramatic if temporary clinical improvement after subtotal adrenalectomy in a patient with multiple secondaries from prostate cancer. Huggins has reported the results of total adrena
Diagnosis of the adrenogenital syndrome is confirmed by a much increased excretion of 17 ketosteroids in the urine. Air studies of the adrenals may show a tumour or hypertrophy. The treatment is similar to that described for Cushing's Syndrome but if a tumour is not found subtotal resection may not be attended by such good results as in Cushing's Syndrome.

Disorders of the Adrenal Medulla

The adrenal medulla develops from sympathetic nervous elements. If it is stained with chromic acid the part which goes brown is the chromaffin tissue and it is this which secretes adrenaline and nor adrenaline and from which a phaeochromocytoma may arise. The part not stained with chromic acid is sympathetic nerve cell tissue and may give rise to the neuroblastoma of childhood.

Phaeochromocytomata appear typically in young adults of either sex and about 10 per cent of the tumours are bilateral. They produce a secretion which may be made up from 50 to 95 per cent of nor adrenaline and the remainder adrenaline. The difference between these two hormones is important since adrenaline acts as an overall vasodilator and only causes a raised blood pressure through increased cardiac output. Nor adrenaline on the other hand, acts as an overall vasoconstrictor with little direct effect on the heart.

The main manifestation of a phaeochromocytoma is the production of paroxysmal attacks of hypertension when the systolic pressure may rise to 300 mm Hg and the diastolic to 200 mm. The patient goes pale and sweats, has a violent pulsating headache and may collapse. Liver glycogen is mobilized during an attack, the blood sugar raised and also the basal metabolic rate (B.M.R.). The attacks usually become more frequent and more severe with the passage of time and may be mistaken for hyperthyroidism. Thyroidectomy being performed in error.

The diagnosis is confirmed when pressure in one loin or over a palpable tumour initiates an attack. Often the patient knows on which side the lesion is situated. Intravenous pyelograms may show displacement of a kidney and air studies may demonstrate the tumour. Roth and Kvale proposed a test in which 0.025 to 0.05 mgm of histamine is injected intravenously and serial blood pressure readings made. In the presence of a phaeochromocytoma the pressure reaches a high peak in two minutes.

Difficulty arises in differentiating between those patients who have persistently raised blood pressure due to a phaeochromocytoma and those with essential hypertension. The intravenous
PART VIII—PRINCIPLES OF TREATMENT OF MALIGNANT DISEASE

SIR STANFORD CADI

Since the last edition of Recent Advances progress has been made in the treatment of malignant disease in many ways. The surgical treatment of cancer in certain sites has made advances both in technique and in a better understanding of the limitations of excisional treatment. The combination of surgery and radiotherapy has become more rational and at the same time more limited. New techniques in surgery, and in radiotherapy as well as advances in the knowledge of the pathology and the natural history of cancer have widened the therapeutic field. The study of hormones in their relationship to two sites of cancer—the breast and the prostate—have resulted in new methods of treatment which prolong life diminish discomfort control pain and affect in many ways the progress of the disease. Chemotherapy by cytotoxic poisons has made available new compounds which have a controlling effect on certain tumours.
lectomy in eighteen patients with extensive metastases. They required 50 mgm of cortisone and 3 gm of salt daily by mouth for maintenance. When orthostatic hypotension occurred DOCA 2–4 mg was given in addition.

In patients with prostatic cancer there was an increase in weight rise in haemoglobin concentration and fall in serum acid phosphatase. The most striking observation, however, was the immediate and persistent relief of bone pain. Of the six patients with advanced breast cancer only three showed improvement. Four patients with advanced cancer of other organs showed progression of their disease after adrenalectomy.

Clearly this form of surgery must be regarded at present as investigative rather than therapeutic.

References

ALBRIGHT F 1942-43 The Harvey Lectures Series 38 123
BLACKWOOD J 1951 Brit Jour Surg 39 111
CAHILL G F and MELICOW M M 1950 Jour Urol 64 1
CUSHING H 1932 Bull Johns Hopkins Hosp 50 137
HUGGINS C and BERGENSTAL D M 1951 Jour Amer Med Ass 147 101
HUGGINS C and BERGENSTAL D M 1952 Cancer Research 12 134
TAYLOR S 1953 Postgrad med Jour 29 208
WALTERS W 1952 Lancet i 221
WILLIAMS R H edit 1930 Textbook of Endocrinology Philadelphia
disease. These technical advances permit the application of radiotherapy to widely disseminated lesions, to deep seated and inaccessible tumours which previously were beyond the range of radiotherapy.

Advances in Radiotherapy

Surgeons treating malignant disease should be familiar with the possibilities and the limitations of radiotherapy. The following brief review has been written with the object of presenting to the surgeon the newer methods of radiotherapy, their indications and their value. No technical details are included and it is now presumed that the biological effects of radiation on normal and malignant tissues and the general principles underlying technique are
CHAPTER XXVI
RADIOThERAPY

Advances in Available Apparatus

In the comparatively brief period since the discovery of X rays and of radium, their application in the treatment of cancer has depended partly on technical achievements in the construction of apparatus but mainly on the advances in physics and in the development of a new speciality that of the hospital physicist and the acceptance by the clinician of the partnership with applied science in the treatment of cancer.

Supervoltage Radiotherapy and Isotopes

These modern and powerful methods of applying ionising energy to the tissues have received a great impetus from the second world war and the rapid strides in the progress of atomic energy the establishment of atomic piles and the numerous radioactive isotopes which have become available.

In addition to the low voltage X rays at 60 to 150 K V and the medium voltage at 200 to 400 K V there are now in clinical use X ray generators of 2 million electron volts (Fig. 140). Such apparatus is in daily clinical use and has many advantages. The most obvious is the possibility of delivering at a depth a greater dose than on the skin, this can be achieved with far less skin and mucosal reaction and enables the radiotherapist to increase the tumour dose well beyond what was possible with conventional types of apparatus. The experimental clinical use of linear accelerators of 4 million and 8 million electron volts further widens the field of radiotherapy. Similarly the use of artificial radioactive sources as opposed to natural radioactive material such as radium has technologically enabled sources of radiation of 1,500–2,000 curies to be applied clinically. Of these radioactive Cobalt 60 is used for distance radiotherapy in a manner similar to teleradium, but with a radiation source increased from 10 gm of radium to an equivalent 200 times as powerful. Cobalt is also used in smaller units equivalent to 40 to 50 curies of radium and also in needles similar to radium needles. Other radioactive isotopes phosphorus gold sodium iodine are also used by injection or by mouth to control certain types of malignant.
Fig 141 Pulmonary metastasis from seminoma of testis (a) Before radiotherapy (b) Five weeks later showing complete disappearance of metastases
sufficiently well known to need no detailed description. Radiotherapy can be used as the sole method of treatment or in combination with surgical excision and further as a presumed prophylactic measure, to prevent or lessen the incidence of post operative recurrences. A knowledge of cancer as a disease, an appreciation of the influence of the stage of the disease on the choice of the method of treatment and a clear conception of the limitations of both radiotherapy and surgery is essential and should prevent the use of either method to the detriment of the patient. Certain common sites of cancer have been selected to review the present state of radiotherapy, its indications and limitations and to illustrate the advances made in treatment.

Tumours of the Testis

This site is chosen as an example of the prophylactic use of radiation. This attempt at preventing metastases in the commonest site namely the para-aortic lymph nodes has been successful and has altered fundamentally the outlook of the majority of patients. The evolution of the treatment of testicular neoplasms in modern times was in stages. At first simple orchidec- tomy was done as this method did not prevent the subsequent development of lymph node metastases and gave only about 7 per cent of five-year survival. The so-called radical operation was advocated first by Chevassu in France (1906) and by Hinman in the United States (1933). The results were improved yet the improvement gave only about 17 per cent of five-year survival. Malignant tumours of the testis still had a very grave prognosis. It was natural therefore to try radiotherapy and this led to a return to simple orchidec- tomy associated with radiotherapy to the abdominal lymph nodes. Since then results have shown a consistent improvement. Dean (1937) reported a series of 170 patients with a 29 per cent of five-year survival. Ahlbom (1947) a series of 119 cases with 50 per cent of five-year survival. There is in fact no other site of a primary malignant growth where the advent of radiotherapy and its prophylactic use has altered the prognosis so fundamentally. The study of the pathology of testicular tumours has advanced simultaneously. Today it is well known and understood that of the two common pathological varieties the seminoma is of better prognosis and the teratoma of much graver outlook. The difference in incidence and age distribution of these two types is well known. It is important to point out that seminoma is one of the most radiosensitive tumours whereas teratoma is radio resistant. Yet it must be emphasized that whatever the histological type post operative...
Carcinoma Bladder

Partial cystectomy is of limited indication, when the tumour is small, papillary in type and has involved the muscles of the bladder. Endoscope diathermy destruction of papillary growths should be considered as a palliative measure, it is only applicable to the warty growth and not to the ulcerative and infiltrating type. Conventional X rays at 200-250 kV have been extensively tried it is of slight palliative value and may control haemorrhage but it is quite useless from the curative point of view. It must be admitted that the so called "deep X rays" have failed signally to control cancer of the bladder. Radium on the other hand has given much better results. Insertion of radium needles or radon seeds with or without additional diathermy destruction of the exuberant superficial parts of the tumour has given control of the disease in a good percentage of cases. In those centres where this method is practised and radium is introduced by wide supra pubic cystotomy and accurately placed in position worth while results are achieved and frequently total disappearance of the lesion is recorded for many years. With this technique a tumour dose of 8,000 r can be given without undue risk of radionecrosis.

Although the results of radium needleling have as yet not been surpassed by other methods of radiotherapy the general dissatisfaction with conventional X rays has given great impetus to the trial of other methods. Cavitary radiation was first tried by placing a radioactive source radium in the centre of a Foley's catheter when inflated the sphere kept the radium in the centre at a given distance of the bladder wall. The advent of radioactive isotopes permitted a similar technique using radioactive sodium and when radioactive cobalt became available this method was further developed. With such methods a much higher tissue dose up to 8,000 r-9,000 r can be given and hence greater control of disease is obtained. However the occurrence of delayed but severe post radiation effects was often recorded. The cystitis and early radium burn of the older methods was found to occur somewhat later with the newer techniques. The euphemistic term cystitis bladdder could not hide the fact that severe radiation necrosis and fibrosis often resulted from cavitary radiation with isotopes of single cobalt sources either in the form of radioactive cobalt wire or in the form of curved needles which permitted a more accurate placing of the needles into the bladder wall. Radiotherapy therefore has returned to the surgical approach using more modern radioactive sources.

The most promising recent advance is in the use of supervoltage X rays at 2 million volts. Experience with the Van De Graaff
radiotherapy is indicated and that the prognosis is improved in both types, although much more so in seminoma.

Management of Patients with Testicular Tumours

Once the diagnosis is established, simple orchidectomy should be performed. This should be done even in patients with metastases in the regional lymph nodes and elsewhere, such as in the lungs or in the skeleton. Simple orchidectomy not only gets rid of the primary tumour but establishes an accurate histological diagnosis. Radiotherapy to the abdomen should be given in all cases. It is in fact of great value in patients who have no clinical evidence of abdominal lymph nodes. The lymphatic drainage of the testis is direct to the para-aortic glands, but also to the internal iliac glands. There is a very free lymphatic communication between all these lymph nodes and those at and above the renal vessels further there is also a free communication between the lymph nodes on both sides. A rational treatment therefore should include the pelvic and abdominal areas. It is therefore at present a generally accepted method to treat the entire lymphatic field. Treatment can be given by conventional X-rays at 250 KV or by supervoltage X-rays at 2 MEV or by teleradium or telecobalt. As the seminomas are highly radiosensitive total tumour doses of about 4,000 r are sufficient for seminoma in teratoma the dose should be increased to 5,000 r - 6,000 r.

The results fully justify this combination of simple orchidectomy and radiotherapy. Of the patients treated prophylactically in the absence of clinically demonstrable metastases 65 per cent survive five years in the case of seminoma and 55 per cent in the case of teratoma (Cade 1952). But even when metastases were present when the patient was first seen about 15 per cent of five year survival was obtained (Prosser 1951). In seminoma pulmonary metastases are equally radiosensitive and may disappear completely after treatment (Fig 141). Pulmonary metastases from teratoma are very radioresistant.

Carcinoma of the Urinary Bladder

This site is chosen as an instance where modern methods of radiotherapy have been tried and developed in an attempt to control the disease. Advances can be recorded both in surgical treatment and in radiotherapeutic methods. Surgically total cystectomy with removal of the prostate in men has established for itself a definite and useful place in treatment. Transplantation of ureters into the bowel is commonly practised and permits total ablation of the
disease. Cases suitable for surgical treatment form about 7 percent of the total seen. As it is either the failure to respond to radiation or an extra lingual spread of the disease which dictates excision, the operative procedures had to be altered and so advances in surgical treatment achieved.

Surgical Treatment. In the case of the tongue itself, if ablation is decided on, it should be carried out intraorally, with the dry therapy needle. In the case of lesions involving the floor of the mouth or the mandible, access is by reflection of a flap consisting of the lip and part of the cheek. The skin margin should extend through the whole thickness of the tissues down to the chin and posteriorly to the edge of the masseter. An adequate portion of the mandible should be excised and in most cases half the mandible is removed disarticulating at the temporo-mandibular joint. Closure
generator is now available in several centres in Great Britain and the results are of considerable promise. Used either as the sole method of therapy or in combination with cystodiathermy a very high tumour dose can be given 6,000 r to 8,000 r, never achieved by the conventional X-ray apparatus at 250 KVP. Such treatment is spread over six to eight weeks and is given in daily treatments aiming at 1,000 r per week. The skin reaction is negligible, the bladder reactions are moderate and cause only moderate dysuria and frequency. Periodic cystoscopic examinations show that the effect on the tumour does not occur for some time varying from six to twelve weeks; the tumour then gradually shrinks and often disappears. This method does not exclude the subsequent 'systolic bladder', but this is of far lesser degree of severity and occurs less frequently. The use of curved cobalt needles interstitially and of supervoltage X-rays as an external form of irradiation are in fact real advances.

Cancer of the Tongue and Mouth

Radiotherapy for malignant lesions in the tongue and mouth has been practised for over thirty years. It is now an established method of treatment and the majority of primary lesions in this site are submitted to radiotherapy as the first or initial treatment (Fig. 142). Advances in technique and in selection of method of treatment have been made since the last edition of this book with the general progress of radiotherapeutic methods. The principles are now well established and can be summarized as follows:

The treatment of choice in most cases as far as the primary growth is concerned is radiotherapy. In the case of the regional lymph nodes the treatment of choice is surgical excision. Thus this site provides an instance of a combined radio-surgical treatment with well defined indications for each method. The stage of the disease nevertheless is the determining factor; thus the policy outlined above applies to early cases and the reverse is the treatment of choice in advanced cases where ablation of the tongue or of the lesion in the mouth and radiological treatment of the cervical lymph nodes is the choice.

A review of the accepted methods of treatment is that radiation is the first choice in the treatment of the primary growth with certain well defined exceptions. Surgery is preferable to irradiation (1) where the disease has extended beyond the tongue and invaded the mandible, (2) where the whole tongue down to the circumvallate papillae is involved by a hard nodular infiltrating growth, (3) where previous treatment by radiation has failed to arrest the
6,000 r - 8,000 r with little damage to the rest of the mouth or the skin and with hardly any general effect on the patient and only a small risk of local radionecrosis.

The method of gammartherapy depends upon the actual site of the lesion. For lesions in the buccal mucosa and anterior part of the tongue, interstitial therapy is the method of choice (Figs. 143 and 144).

![Diagram](image)

Fig. 144. Combined needling and mould in the treatment of a carcinoma of the buccal mucosa and lip. Four needles are shown inserted deep to the lesion. A box carrying a quantity of needles is applied outside the lip and cheek. The neoplasm is thus irradiated from two sources.

Radium needles, radon seeds or the more modern cobalt 60 needles which can be straight or curved and offer greater flexibility of technique can be used.

Needling of the tongue can be done either in a single plane implant for lesions of moderate size or by a two plane or volume implant in tumours of greater bulk.

In the case of lesions of the pharyngeal part of the tongue involving the vallecula, oral aspect of the epiglottis or glosso palatine folds, distance radiation by telecurium or telecobalt is the method of
of the buccal cavity is achieved by careful stitching of the mucosa of the flap to the floor of the mouth. The skin is closed separately and the space between the newly formed mouth floor and the skin should be drained externally.

Radiotherapy There is no doubt that gamma radiation has given much better results than X-ray therapy at the conventional 200-250 KV. The explanation may be found in the difference of wavelength and hence difference in the biological effect or in the increased total dose which is greater with gamma rays than X rays. There is no doubt clinically that the achievement of gamma radiation surpasses that of X rays in the case of epithelial cancer of the mouth and tongue. Gamma radiation can be given up to a total dose of

Fig 143 Radium needles in tongue. 10,000 r delivered in seven days. The extensive carcinoma involving the whole anterior part of the tongue disappeared and the tongue healed.
Treatment of the Cervical Lymphnodes

It is now accepted in most important centres that in the absence of enlarged cervical lymphnodes, an expectant policy is justifiable. Prophylactic radiotherapy for the neck is no longer practised, neither is prophylactic block dissection advised if the patient can be kept under routine supervision.

The indications for block dissection, which is the method of choice for enlarged cervical lymphnodes are clear cut and can be summarized as follows —

(1) The primary lesion in the mouth should be healed
(2) The lymphnodes should be clinically enlarged, palpable, but mobile
(3) The general condition of the patient should not preclude a major surgical intervention

A block dissection and not the removal of the enlarged lymphnodes should be done. It must include the deep cervical fascia from the mandible to the clavicle from the midline anteriorly to the anterior edge of the trapezius posteriorly. The internal jugular vein, the sternomastoid, omohyoid and posterior belly of the digastric must be removed if a complete clearance of the lymphnodes is to be achieved in the anterior, posterior, submandibular and supraclavicular areas. It is now well known that bilateral block dissection with excision of both internal jugular veins is safe but it is still customary to allow an interval of about seven days or more between the removal of the first and second internal jugular veins. The spinal accessory nerve is cut high up in the neck and also lower down near the posterior edge of the trapezius.

Indications for Radiotherapy for Cervical Lymphnodes

Control of the disease can only be accomplished if the lymphnodes are mobile and can be removed together with the deep cervical fascia. Adherence of the nodes to the main vascular sheath or fixation of the enlarged lymphnodes to the muscles render the case unsuitable for surgery although it is still operable technically. In such cases radiotherapy should be decided on in preference to surgery. Radiotherapy can be given by teleradium, supervoltage X-rays or needles. In most cases external radiation is preferable to needleing.

Cancer of the Larynx

This is essentially an endolaryngeal lesion, within the framework of the laryngeal cartilage. It is a neoplasm of the vocal cord and of the ventricular band. Its natural extensions are forwards to the
choice (Fig 145) Ten gram radium units 50 curie telecobalt units or more recently very powerful apparatus containing 1500-2000 curies of cobalt 60 are used. External radiotherapy can also be used with confidence with X rays at 2 million volt or 4 millon linear accelerators. These powerful and recently developed methods deliver high intensity radiation which can be focused on the lesion.

and deliver a total dose of 6000 r to 8000 r or more so reaching tissue doses achieved by interstitial methods without any severe effects on the skin. It is now well known that in the majority of patients such treatment given with skill and accuracy leads to complete regression of cancer of the mouth and healing which is long lasting. The advantage of radiotherapeutic methods over surgical local ablation is the lack of mutilation, preservation of function and a greater chance of permanent control of the disease.
include subsequent laryngectomy. In the external method of treatment both X-rays and teleradium can be used. Except for its tediousness the method offers many advantages. Those who have both radiotherapeutic facilities available prefer teleradium. W. Lederman (1952) points out that there are technical, physical and clinical reasons for this. The ease and simplicity of teleradium is preferable to the conventional X-rays. The differences in the wavelength of radiation, in the percentage of depth dose and in the shape of the radiation beams are the advantages of teleradium. There is ample clinical evidence that with less post radiation effects on the skin and mucous membrane, there is better response as regards regression of the tumour and greater freedom from recurrence. There is evidence that supervoltage X-rays at 2 million volt upwards, and telecobalt units are as effective as teleradium and superior in every way to conventional X-rays at 250 KV. The great change in the choice of treatment during the past few years is a reversal of policy. Whereas previously early and favourable cases were treated surgically and advanced cases by radiotherapy, to-day the position is reversed, and early endolaryngeal cancer is confidently submitted to radiation. Surgery is selected for the advanced cases and for radiation failures.

Indications for Surgery In patients with old standing polydactyly of the cords, where the carcinoma is a metaplasia of the pre-existing precancerous condition in radium fulures, that is when the disease is not controlled by adequate doses given with good technique. In advanced and extensive lesions in subglottic extension.

Indications for Radiotherapy In early and localized lesions. If advanced cases as a preoperative measure.

To ensure that radiation in advanced cases does not jeopardize the chances of laryngectomy certain rules as to the management of radiation must be adhered to. A predetermined total dose not exceeding 5,000 r is aimed at. If no regression is obtained, radiation is discontinued. If partial regression is obtained a time limit must be set for instance four to six weeks to assess the result. Persistence of the lesion indicates the need for a further biopsy and if this is positive laryngectomy should not be delayed. It is very important to recognize radiation fulures and distinguish them from delayed reaction radionecrosis or perichondritis.

Bone Sarcoma

Sarcoma of bone can be classified into four main types: (1) osteogenic sarcoma, (2) Gowing's tumour, (3) Multiple myeloma.
anterior commissure and to the base of the epiglottis downwards to
the subglottic space posteriorly to the arytenoids. In the decision
as to the choice of the method of treatment and in assessing the
results of various methods, a classification according to the exact
site and extent of the tumour is of importance. The earliest stage
of the disease which may aptly be called carcinoma in situ or
stage 0 is in fact only detected by biopsy and occurs mostly in
cases with pre-existing disease of the cords such as hyperkeratosis.
It is in fact a precancerous state similar to the leukoplaikia familiar
in the mucous membrane of the mouth and elsewhere such as the
urinary bladder and the vagina.

The commonly accepted classification is as follows —

Stage I Lesion of anterior two thirds of one vocal cord
Stage II Involvement of both vocal cords and anterior
 commissure
Stage III Extra cordal extension with fixation of vocal cord
Stage IV Involvement of other parts of the larynx

The disease can spread proximally to the ventricle of Morgagni to
the false cord and to the laryngeal aspect of the epiglottis. More
significant is the extension distally to the subglottic space. It is
important to diagnose such downward spread very early as lesions
with subglottic extension or primary subglottic carcinoma are diffi-
cult to control by radiation and many of such cases eventually
require laryngectomy. The accurate diagnosis of the site and
extent of the disease and of the histological grading is of great
importance in the choice of treatment and in the management of
the patient.

Choice of Method of Treatment Two problems arise in the
decision as to the choice of treatment: (1) Surgery or radiotherapy?
(2) If radiotherapy, what method? V. E. Negus (1947) in an
analysis of the relative merits of the available methods points out
that the discomforts during and after treatment must be considered
Laryngofissure is the least distressing surgical method con-
trasting, the voice is hoarse and apart from this there
is no disability. Laryngectomy interferes with swallowing for a
short time, but tracheotomy is permanent. Esophageal speech can be
acquired or a vibrating rod used. The operation is a major one
with permanent subsequent disability. Of the radiological methods
interstitial radium requires an operative intervention, if successful
the voice is almost normal. The treatment is of short duration and
tracheotomy is not needed. Parium perichondritis is an occasional
sequela. If unsuccessful fenestration of the larynx does not pro
clude subsequent laryngectomy. In the external method of treatment, both X-rays and teleradium can be used. Except for its techmousness the method offers many advantages. Those who have both radiotherapeutic facilities available prefer teleradium. M. Lederman (1952) points out that there are technical, physical and clinical reasons for this. The ease and simplicity of teleradium is preferable to the conventional X-rays. The differences in the wavelength of radiation in the percentage of depth dose and in the shape of the radiation beams are the advantages of teleradium. There is ample clinical evidence that with less post radiation effects on the skin and mucous membrane, there is better response as regards regression of the tumour and greater freedom from recurrence. There is evidence that supervoltage X-rays at 2 million volt upwards, and telecobalt units are as effective as teleradium and superior in every way to conventional X-rays at 250 KV. The great change in the choice of treatment during the past few years is a reversal of policy. Whereas previously early and favourable cases were treated surgically and advanced cases by radiotherapy to day the position is reversed, and early endolaryngeal cancer is confidently submitted to radiation. Surgery is selected for the advanced cases and for radiation failures.

Indications for Surgery In patients with old standing polyp derma of the cords where the carcinoma is a metaplasia of the pre-existing precancerous condition. In radiation failures that is when the disease is not controlled by adequate doses given with a good technique. In advanced and extensive lesions in subglottic extension.

Indications for Radiotherapy In early and localized lesions. In advanced cases as a pre-operative measure.

To ensure that radiation in advanced cases does not jeopardize the chances of laryngectomy, certain rules as to the management of radiation must be adhered to. A predetermined total dose not exceeding 5,000 r is aimed at. If no regression is obtained radiation is discontinued. If partial regression is obtained a time limit must be set for instance four to six weeks to assess the result. Persistence of the lesion indicates the need for a further biopsy, and if this is positive laryngectomy should not be delayed. It is very important to recognize radiation failures and distinguish them from delayed reaction radionecrosis or perichondritis.

Bone Sarcoma

Sarcoma of bone can be classified into four main types: (1) osteogenic sarcoma. (2) Ewing's tumour. (3) Multiple myeloma.
<table>
<thead>
<tr>
<th>Type</th>
<th>Incidence of all bone tumours</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Type of bone affected</th>
<th>Osteolysis</th>
<th>Site of origin</th>
<th>Metastases</th>
<th>Radiographic appearance</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteogenic sarcoma</td>
<td>60%</td>
<td>10-70</td>
<td>M:4 F:3</td>
<td>Long bones</td>
<td>Ends</td>
<td>Lungs</td>
<td>Other bones</td>
<td>Rarefaction</td>
<td>Spindle cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(all bone)</td>
<td>(Metaphysis)</td>
<td></td>
<td></td>
<td></td>
<td>Pleomorphic cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sclerosis</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New bone formation</td>
<td>Cartilage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Codman's triangle</td>
<td>Osteoid tissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sun-ray spikes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Round or polyhedral cells</td>
</tr>
<tr>
<td>Ewing's tumour</td>
<td>12%</td>
<td>5-15</td>
<td>M:2 F:1</td>
<td>Long bones</td>
<td>Centre</td>
<td>Skull</td>
<td>Lungs</td>
<td>Sclerosis of cortex and medulla</td>
<td>Very scanty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(short bones)</td>
<td>(Diaphysis)</td>
<td>Lymph glands</td>
<td>Other viscera</td>
<td>bone marrow pool</td>
<td>Intercellular stroma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New bone</td>
<td>Patchy rarefaction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>3%</td>
<td>40-60</td>
<td>M:2 F:1</td>
<td>Flat bones</td>
<td>Centre</td>
<td>Spleen</td>
<td>Liver</td>
<td>Bone destruction</td>
<td>Round or oval cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Medulla)</td>
<td></td>
<td></td>
<td></td>
<td>Plasma cells (giant cells)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No compensatory new bone formation</td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td>20%</td>
<td>10-30</td>
<td>Equal incidence</td>
<td>Long bones</td>
<td>Ends</td>
<td>None</td>
<td></td>
<td>Expansion of cortex</td>
<td>Multinucleated giant cells (15-50 nuclei)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(all bone)</td>
<td>Jaw Pelves</td>
<td></td>
<td></td>
<td>Trabeculation</td>
<td>Round cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(scapula)</td>
<td></td>
<td></td>
<td></td>
<td>No new bone formation</td>
<td>Spindle cells (stroma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vascular spaces</td>
</tr>
</tbody>
</table>
(4) the malignant variety of osteoclastoma. The development of bone tumours is controlled by the same physiological processes as those which occur in the response of bone to injury and inflammation. Thus the formation of callus, absorption of bone, sclerosis, all occur in varying degrees in bone sarcoma and indeed a history of trauma is common both in osteogenic sarcoma and in Ewing's tumours, and not infrequent in other varieties. Bone sarcoma may originate from any tissue possessing bone forming properties, from bone itself or cartilage from bone marrow or the endothelium of the blood vessels. Each type of tumour has a somewhat different natural history and differs in many respects in age of onset, skeletal distribution, incidence, radiographic appearance and metastatic spread (Table XII). The histological appearance is characteristic of each type. Thus osteogenic sarcoma is essentially a spindle cell tumour with a marked pleomorphism of the stroma which may contain bone cartilage osteoid tissue, fibrous tissue in any proportion. The cartilage containing osteogenic sarcoma may be primary or develop from a preexisting apparently benign chondroma, the so-called secondary chondrosarcoma. The cell unit of Ewing tumour is a round cell in multiple myeloma the characteristic cell is the plasma cell with an eccentric nucleus. A variety of round and polygonal cell—the reticulum sarcoma of bone is now recognised. The multinucleated giant cell is the characteristic cell of osteoclastoma, both benign and malignant.

Diagnosis

This is based on the clinical history, physical signs and radiological appearance. But all these can be misleading and abnormal or unusual features in other pathological processes such as formation ossifying haematoma or low grade inflammation may cause considerable difficulty in diagnosis. Similarly, some osteolytic varieties e.g. the telangiectatic osteogenic sarcoma are at times difficult to distinguish from a metastatic bone tumour from a hypernephroma or other clinically silent primary growth and it is now well known that Ewing's tumour may be confused with skeletal metastasis from a neuroblastoma. Neither can the solitary type of multiple myeloma, the plasma cell tumour or plasmacytoma be readily distinguished from an osteolytic metastasis. Biopsy therefore is of great importance and there is in fact no evidence that biopsy in bone tumour is dangerous and likely to disseminate the disease. It is, however, essential to provide the pathologist with a representative piece of tumour and this cannot as a rule be obtained except by open operation. Aspiration biopsy is very useful in multiple myeloma and a sternal or iliac crest marrow puncture is now a routine procedure.
Effect of Radiation on Bone Sarcoma Sarcoma of bone shows varied degrees of radiosensitivity. Ewing's tumour is the most sensitive osteogenic sarcoma the least so. Osteolytic lesions show a more obvious response to radiation than the sclerosing variety. There is clinical radiological and histological evidence that bone sarcoma is influenced by adequate radiation. The following changes are seen: (1) Progressive diminution in size of the tumour, (2) recalcification of osteolytic lesions, (3) resorption of abnormal bone, (4) healing of pathological fractures, (5) restoration of the contour of the bone. Comparison of biopsy material taken before and after radiation shows arrest of mitosis, abnormal mitosis, increased fibrosis. Like in other tumours so in bone sarcoma the response to treatment is variable and in some patients no changes are observed.

Treatment Amputation remains the main treatment but as the results of amputation do not seem to prevent metastasis in the majority of patients, other methods of treatment likely to improve the prognosis can be tried. Radiation is used as the sole method if amputation is refused or if the tumour is irremovable. Radiation should be used in conjunction with surgery in all cases in view of the poor results of surgery and in the knowledge that radiation alters the course of disease. Radiation should precede surgery and there is no evidence that delay in amputation adversely affects the patient's expectation of life. Treatment by super voltage X-rays or teleradium should be given slowly, spread over six to eight weeks, often longer. There is evidence that high tissue doses are more effective than lower doses. Thus 8,000 r to 9,000 r give better results than 4,000 r. Such doses are now possible with super voltage X-rays whereas with conventional X-rays it resulted in radio necrosis. The present day views as regards treatment can be summarized as follows:

Osteogenic Sarcoma (Figs 146, 147, 148) A radio-resistant tumour which requires large tissue doses. Surgery remains the main treatment pre-operative radiation is a routine is advisable and there is no harm in the delay in amputation.

Ewing's Tumour (Fig 150) A highly radio-sensitive neoplasm it responds rapidly to radiation which should always be the first method of treatment. Regression is often complete although not often permanent.

Multiple Myeloma (Fig 149) Radiation is used for the relief of pain. Being a multi-focal disease surgery has no place in the treatment. Radiation relieves pain. The use of cytotoxic poisons, such as derivatives of Nitrogen Mustard combined with oestrogens
116 Osteogenic sarcoma of femur. Telangiectatic variety with marked osteolysis. Female aged eleven years.

117 Osteogenic sarcoma of tibia. Radiograph of a thin slice of the amputation specimen showing the tumour within the cancellous part of the bone, and invasion of the soft tissue by bursting through the periosteum.
Fig 140 Multiple myelomatosis Plasma cell tumour The vertebral ribs and pelvic bones were also affected
1 in 150 Fying sarcoma of tibia. Radiograph of specimen after amputation.

Fig 151 Osteoclastoma of tibia. Giant cell tumour.
has been shown to control the disease and prolong life, sometimes by several years.

Osteoclastoma (Fig. 151) This is most commonly a benign lesion although the malignant variant is well recognized although rare. In the benign variety both surgery and radiation give satisfactory results. The choice of treatment depends upon the following factors: site, size and type of tumour and the age of the patient. The typical tumour producing bone expansion, trabeculation and thinning of the cortex responds better to radiation than the solitary cyst-like lesion. Surgery is indicated in preference to radiation.

1. In young patients when the tumour is in close proximity to the epiphysis and irradiation may be followed by arrest of growth at the growing end of the bone.
2. In tumours of moderate extent when the destruction of bone is limited and the cavity left by curettage small.
3. When the tumour has extended into the neighbouring joint.

Radiotherapy is indicated.

1. In healthy adults.
2. When the tumour is difficult of access, such as in the spine or the pelvis.
3. In tumours showing radiologically the "soap bubble" appearance.

The total dose required to produce recalcification of the tumour is small in the region of 2000 r in children and 3000 r in adults. The immediate response to treatment often shows increase in swelling and pain and further decalcification this is however a temporary effect lasting a few weeks and is followed by healing. It is generally agreed that the combination of treatment by curettage with or without grafting with radiotherapy is not advisable. If the tumour is completely removed radiation does not hasten repair. To be effective radiation should be given without preliminary scraping. In malignant osteoclastoma the treatment is similar to that of osteogenic sarcoma.

Malignant Disease of the Skin

Malignant lesions of the skin comprise three different types of lesions (1) Rodent ulcer or basal cell carcinoma (2) Epithelioma or squamous cell carcinoma and (3) Malignant melanoma or nevus cell carcinoma. Lesions can occur on the skin or on the mucous cutaneous junctions such as the lip, conjunctiva, anus and vulva. Certain sites such as the penis require special consideration and other such as cancer of the scrotum is a notifiable disease in certain occupations.
Rodent Ulcer. In this lesion radiation has proved of such value that in most clinics it has become the routine treatment (Fig 152). In early and previously untreated cases 90 per cent of freedom of disease is obtained and 70 per cent in cases where structures other than the skin are involved. Although rodent ulcers are sensitive to radiation and often regress completely with as little as 1,500 r, to ensure permanency of results 3,000 r should be given. Radiation can be given by low voltage X-rays, radium or a surface application of radioactive phosphorus (beta radiation). Surface radiation in superficial small lesions or needing in excavating or thick lesions is indicated. The achievement of low voltage X-rays by the contact method is limited by the depth of the lesions and as the rays do not penetrate beyond a few millimetres sterilisation is assured in superficial lesions only. The importance of the method of radiation lies not so much in the achievement of immediate primary healing which presents no great difficulty as in the permanency of the results obtained. It is noteworthy that the very high percentage of cures of rodent ulcers by radiation is obtained in previously untreated specially previously non irradiated lesions. The results of made
quate radiation, specially by X-rays but also by repeated surface radium or other forms of treatment caustics show limited local excision etc. When assessed in a true light show that such treatments rob the patient of his best chance of cure. Inadequate irradiation is a greater evil than inadequate surgery and small doses of X-rays repeatedly given over long periods should be condemned.

Although radiotherapy is the method of choice in untreated cases in those where the bone or cartilage is involved in recurrent cases in certain sites such as the ears surgery and diathermy alone or in conjunction with radium have a useful place in the treatment.

![Image of epitheloma of penis before and after treatment](image)

Fig 132 Epitheloma of penis (a) Before treatment (b) Three months later showing lesion completely healed

Epitheloma Surgery and radiation each have an important place in the treatment of this type of skin cancer. Previous radiation either therapeutic or occupational exposure with subsequent dermatitis are a contra indication to radiotherapy. For lesions on the trunk or back or on the thigh excision has the advantage of speed and simplicity in large lesions excision and skin graft is indicated. In lesions on the hand feet perineum and vulva surgery is safer and by excision the risk of a radiation burn is eliminated. In lesions on the face in all sites where avoidance of scarring is important radiation is preferable and gives 70 per cent. of five years freedom of disease.

Epitheloma of Penis The choice of the method of treatment
depends primarily on the extent of the disease. Early cases are best treated by radiation (Fig 153) late cases by surgery (Fig 154). Complete healing of the lesion without mutilation or functional disability can be obtained by radiation in early cases. The contra indications to radiotherapy are (1) Involvement of the urethra by an infiltrating growth (2) Advanced lesions when the body of the penis is involved (3) Spread of the tumour to the corpora cavernosa or to the corpus spongiosum (4) In diabetics because they are apt to develop necrosis. X rays, surface radium or needles can be used.

Malignant Melanoma. These tumours are radio-resistant and
their treatment by radiation is difficult and disappointing, there is however, a definite place for radiation in the treatment of this highly malignant tumour (Ellis, 1939). Surgery remains the method of choice and extensive and radical local removal should be attempted wherever possible. Radiation preferably by radium is indicated in the following cases, when adequate excision is not possible: in multiple tumours, in local recurrences after extensive resection, for inoperable lymphnodes, the seat of metastases, as a pre or post operative measure.
CHAPTER XXVII

HORMONAL CONTROL OF CANCER

In 1896, Beatson, at the Glasgow Cancer Hospital, took out both ovaries in a patient with advanced cancer of the breast. This was the dawn of remote or hormonal control of cancer. Since then attempts have been made to achieve the same result by X radiation castration. The experimental work of Charles Huggins in Chicago on the physiology of the prostate, his observations on the excretion of acid phosphatase in prostatic cancer and E C Dodds' synthesis of stilboestrol have been the most important steps in the development of a completely new method of controlling cancer in two sites, the breast and the prostate. Advances in biochemistry, the laboratory production of oestrogens other than stilboestrol and of a variety of androgens have made it possible to castrate chemically as well as surgically and radiologically.

So far no other neoplasms other than those of the breast and prostate are known to be capable of being influenced by male and female sex hormones. The fundamental importance of these observations is the fact that cancer in these two sites can be influenced by a change in the host's hormonal environment. Studies of the ketosteroid metabolism indicate that steroid hormones are only produced in the presence of the gonads and of the adrenals. The removal of these organs so affects the normal course of mammary and prostatic cancer that control of the disease is obtained even in advanced and generalized widespread metastatic disease involving most of the skeleton and in visceral and cutaneous metastases. The removal of the gonads and of the adrenals contrasts vividly with the modern trend of radicalism in the excisional attack on growths.

The surgical procedures—bilateral oophorectomy, subcapsular bilateral orchidectomy and bilateral adrenalectomy—are to day in the light of experience limited both in time and in numbers of patients observed still very much in the experimental stage. But the dramatic change in the general and local condition of patients in the terminal stages of cancer in these two sites the reprieve from apparently certain death within a brief period renders this neuest of all methods worthy of extensive trial.

The administration of oestrogens in prostatic cancer and of
androgens and oestrogens in mammary cancer are now well established and universally practised methods of treatment. Their usefulness and their limitations are well known.

Bilateral Oophorectomy This operation by itself has a temporary effect on the cancer of the breast. Oestrogenic activity of the ovary is abolished, whereas by radiologically induced menopause it is only partially influenced. Castration however is followed by the formation of oestrogen by the adrenals and the benefit of the operation is therefore temporary. At present it is used as an adjuvant to androgen therapy.

Bilateral Subcapsular Orchidectomy This simple surgical measure is effective in the control of cancer of the prostate. It obviates the need of oestrogen administration and so eliminates the unpleasant side effects such as pigmentation, enlargement of the breasts and nausea. It prolongs the period of control as it may by itself be effective for two years when further improvement can be obtained by oestrogens.

Bilateral Adrenalectomy This operation has been rendered possible by the availability of cortisone. Most patients are stabilized on 50 mg of cortisone daily. The efficacy of adrenalectomy can be judged by the rapid disappearance of pain from skeletal metastases and the improvement of the general state of the patient which often returns to a near normal state.

Not all cancers of the breast and prostate respond to hormonal treatment. It is at present not known why this should be so. Huggins believes that the adenocarcinoma is the most likely to respond to bilateral adrenalectomy, but the author's experience shows that the scirrhus type carcinoma simplex and medullary carcinoma of the breast respond as well.
CHAPTER XXVIII

PELVIC VISCERECTOMY

Operability in Pelvic Cancer

Advances in surgical technique have resulted in a readjustment of the limits of operability. Technical operability should be distinguished from suitability for surgery. In malignant tumours of the pelvic viscera—especially uterine cancer, the disease may be widespread locally and yet not give rise to metastases in the liver or other viscera. More rarely in cancer of the rectum or pelvic colon and even less frequently in cancer of the bladder, there may be direct extension of the primary growth to the adjoining viscera without visceral metastases. Such cases judged by the accepted criteria of operability—that the tumour should be limited to the organ of origin and mobile and that the enlarged lymph nodes should be limited in extent—were considered beyond surgical help. In many such patients the lesion, often cancer of the uterine cervix, had already been submitted to radiotherapy. These patients are in a pitiful state often with recto-vaginal or vesico-vaginal fistula. Urine, faeces, pus, mucous, blood, and pieces of tumour escape through the vagina, rectum and perineal fistula. To these patients the offer of any surgical procedure, however wide and mutilating, remains the only hope and is nearly always accepted.

Indications for Pelvic Viscerectomy

1. In cancer of the uterus where the disease is beyond the widest Wertheim's hysterectomy. This includes cases where there is involvement of adjoining viscera—the rectum or bladder obstruction in one or both ureters by the disease in the parametria. In post-radiation failures, these can be primary failures where no response to radiotherapy is achieved or delayed failures when after a variable period of quiescence the malignant growth recurs and spreads. It also includes patients with severe post-radiation effects; in fact, radiation burns usually associated with active cancer.

2. In cancer of the pelvic rectal junction or rectum, specially in young patients when the tumour involves the prostate and bladder in men or the vagina and uterus in women.

3. In cancer of the bladder with extension of the disease to the
rectum and prostate in men or extension to the uterus and vagina in women

4 In para-rectal local recurrences following Wertheim’s hysterectomy

5 In local recurrences following misguided attempts at conservative resection of the rectum

6 In primary carcinoma of the vagina vulva, or extensive recurrences involving the vagina and urethra

Fig. 155. Photograph of abdominal wall following complete pelvic viscerectomy. It indicates the colostomy in the left iliac fossa and the opening of the new urinary bladder at the upper end of the laparotomy scar at the site of the umbilicus which has been excised.

Whatever the condition calling for pelvic viscerectomy there is still the question of operability to be considered. When the disease has extended beyond the pelvic fascia and is adherent to the pelvic wall viscerectomy is no longer possible as the tumour will not be cleared sufficiently widely to warrant the extensive procedure. Structure of the ureters hydroureter and moderate bilateral hydro nephrosis are not contra indications if the renal function is still adequate. Extension of metastases to the abdominal lymphnodes proximal to the aortic bifurcation like visceral metastases precludes the operation. Before deciding on pelvic viscerectomy it is impor
tant in all cases to carry out intravenous pyelography and an X-ray examination of the bony pelvis, the spine and chest to exclude skeletal and visceral metastases. A preliminary examination under anaesthesia including sigmoidoscopy and cystoscopy is advisable. Age by itself is no contraindication and the operation has been successfully performed in patients of seventy-five years of age.

Wet Colostomy

The original operation devised and first practised by Alexander Brunswig left the patient with a wet colostomy. The author's personal experience has led him to abandon this and to transplant the ureters into an isolated portion of the descending colon and so provide the patient with a urinary fistula separate from the colostomy (Fig 155). This procedure not only makes life more comfortable, but eliminates the recurrent attacks of ascending pyelitis occurring not infrequently in patients with wet colostomies.

Variations in Extent of the Operation

Each patient must be considered in detail and the site and extent of the disease will indicate if partial or complete pelvic viscerectomy is to be done. Similarly, primary disease of the vulva or vagina or extension to the anus and perineum will decide if the excision is to include the vulva, anus and perineum. An anterior viscerectomy includes the bladder, uterus, urethra and vagina. In such cases the ureters are transplanted into the descending or sigmoid colon and a colostomy is avoided. Posterior viscerectomy includes the rectum, vagina and uterus. A simple colostomy only is necessary and micturition is not interfered with. Total viscerectomy includes all the pelvic viscera and necessitates a colostomy and a urinary fistula.

As the partial procedures are modifications of the total viscerectomy, the latter only need be described.

Anaesthesia

Operations of this magnitude are done with greater ease under hypotensive anaesthesia. Haemorrhage is negligible; shock is guarded against and the immediate post-operative period smooth.

Position of Patient

The best position for the complete operation, including the excision of the vulva and perineum is that devised at St Mark's Hospital for the synchronous combined abdomino-perineal excision of the rectum. In this combined Trendelenburg Lithotomy position both the abdominal and perineal vulval parts of the operation are done without changing the patient's position. This also enables two surgeons to operate.
simultaneously and not only reduces the time of the operation, but renders it an easier and simpler procedure. If the abdominal part only is needed, Trendelenburg’s position is sufficient.

Abdominal Operation A midline incision is made extending from the pubis to the umbilicus. If the bladder is to be removed, the umbilicus is excised, otherwise the incision skirts the umbilicus to give adequate approach. The liver is palpated for metastases. The local extent of the disease is assessed by inspection and palpation, and the extent and site of lymphnode involvement is ascertained. The peritoneum over the aortic bifurcation is incised. On the right side this incision curves outwards along the common and external iliac arteries. This exposes the right ovarian vessels which are clamped, cut across and ligated. The right ureter is exposed and followed down. The internal iliac artery and vein are ligated and cut across. The right round ligament is cut across at its lateral end. The lymphnodes along the external and internal iliac vessels are dissected downwards and medially. Carefully preserving the external iliac vessels the obturator lymphnodes are dissected. The obturator nerve is preserved and retracted laterally.

On the left side, the sigmoid is mobilized by incising the peritoneum on its lateral border. The mesosigmoid is separated from the posterior abdominal wall. The left ureter is exposed, the mesentery is divided and the left ovarian vessels clamped, and cut across. The internal iliac artery and vein are clamped and ligated and the obturator fossa cleared of lymphnodes. The mesentery of the sigmoid colon is divided and the vessels clamped and ligated, the pelvic rectal junction and rectum are separated from the hollow of the sacrum by blunt dissection. Attention is then turned to the bladder. The peritoneum on the anterior abdominal wall is incised and the bladder and perivesical fat separated from the pubis till the urethra is well exposed and separated. In the male, the prostate is separated from the retropubic space and the urethra mobilized and both vasa divided.

Both ureters are cut across at a level well clear of the disease. Two intestinal clamps are placed across the sigmoid and the bowel divided. The pelvic contents are now free from all peripheral attachment and held in position by the urethra and the vagina. If the perineal stage is deemed unnecessary, the urethra is cut across the proximal part of the vagina freed and divided. The rectum is divided just proximal to the anal canal. There is no need to suture the cut end of the vagina which is subsequently used for drainage or to suture the anal canal.

An artificial bladder which is in fact a small pouch into which
Fig 156 Specimen of pelvic viscera removed in toto by the combined abdominal and perineal vulval operation for a carcinoma of the vagina involving the cervix, uterus, bladder and rectum. All of the viscera together with the urethra, the vagina, the anal canal, the vulva and the perineum were removed.

Fig 157 Pelvic viscera removed for a carcinoma of the sigmoid colon which has involved the urinary bladder, uterus and the vagina. The specimen shows these viscera. The urethra, the distal half of the vagina and the anal canal, the perineum and vulva were not removed.
the ureters are implanted in now fashioned. A distal segment of the
descending colon or sigmoid about 2½ to 3 inches in length is
separated from the main bowel by division between clamps, part
of the mesentery is divided but this should not interfere with the
viability of this small portion of the colon. The distal part is care-
fully closed with two layers of sutures. Both ureters are then
implanted into the isolated loop, the proximal end is brought up
to the upper end of the laparotomy incision and sutured to the skin
at the level of the previously excised umbilicus. The pelvis denuded
of peritoneum is packed with Vaseline gauze, which is brought out
through the vagina.

The distal end of the descending colon is brought out through a
small separate incision in the left iliac fossa to form a colostomy.
The abdomen is closed without drainage.

The Vaseline pack is left in position twenty four hours, when it is
removed through the vaginal orifice.

Perineal-Vulval Stage If this is decided on, it is preferable that
this part of the operation should be done by a second surgeon
synchronously with the abdominal part. A purse string suture
closes the anus. An elliptical incision is made around the vulva and
perineum and is prolonged posteriorly to the coccyx. The levatores
ani muscles are exposed and cut across at their lateral attachment
to the pelvic wall. The ischio rectal fossae are dissected clear. The
incision around the vulva is deepened anteriorly to the pubic arch
and laterally. At this stage the two surgeons, working together,
complete the separation of the pelvic contents and vulva by cutting
across the remaining few fibres holding the urethra to the pubic
arch. The pelvic contents are then removed as one mass (Figs. 156,
157). The skin in the perineal wound is closed completely except for
the end of the Vaseline gauze pack introduced into the pelvic cavity
as already described and brought out through the perineal wound.
The abdomen is closed without drainage.

A modified colostomy belt incorporating a de Rutzen bag to
collect the urine is worn.

References

Ahlborn H 1947 Acta Radiol Stockh 28 689
Beaton G T 1896 Lancet ii 104
Bruns-Dwag A 1948 Cancer 1 177
Cade S 1932 Malignant Disease and its Treatment by Radium Vol
IV John Wright & Sons Bristol
Chevalier 1906 Tumeurs du Testicule Paris
Dean A L 1935 J Amer med Ass 105 1965
Dodd E C 1934 Lancet i 987
Ellis F 1939 Brit J Radiol 12, 327

Edwards R A 1920
HINMAN I 1933 Surg Gynec Obst 56 470
HUGGINS C and BAXER R 1951 Cancer Research 11 428
HUGGINS C 1952 Cancer Research 12 134
LFDERMAN M 1972 Ann Roy Coll Surg 11 47
PART IX—ISOTOPES

CHAPTER \text\X

CLINICAL APPLICATION

SILVIA TAYLOR

The word isotope was introduced by Soddy in 1910 when he postulated the existence of more than one stable form of an element. In 1934, Joliot and Curie discovered artificial radioactivity and this led to the production of many radioactive isotopes. The list twenty years has witnessed a most rigorous application of stable and radioactive isotopes to medical problems and the war years saw an intensification of this work. The opening of a chain reacting pile at Harwell has provided this country and many parts of the Commonwealth with a regular and inexpensive supply of radioactive isotopes. It is said that those who make history never have time to read it, but when a new field of investigation expands as rapidly as the isotope one it becomes imperative to follow its advances in order to try and keep some sort of perspective. The titles of suitable books providing a simple introduction to the physics of the subject and also some of the good comprehensive reviews of the application of radioactive isotopes to biological problems will be found in the list of references at the end of this chapter.

Physics

The atoms of any chemical element consist of mixtures of particles with different masses; this explains why so many chemical atomic weights are not whole numbers. For example, boron has the atomic weight 10.82 and is made up of atoms with masses of 10 and 11. These represent stable isotopes. The only stable isotope which has been much used is deuterium or heavy hydrogen in the form of heavy water, and it has been employed in the study of water metabolism both in animals and man.

Joliot and Curie's discovery of artificial radioactivity led to the introduction of unstable or radioactive isotopes, these isotopes represent elements in which the balance between the outer shell of electrons and the inner nucleus is unstable and these isotopes decay to stable elements by giving off energy in the form of α, β, or γ rays.
or some combination of these three. Alpha (α) rays are helium nuclei, they are relatively stable, have an extremely short range and need not concern us here. Beta (β) rays are electrons which carry various charges and thus have different powers of penetration. Gamma (γ) rays are a form of electromagnetic waves of varying energy and long range.

These three kinds of emanation α, β, and γ rays can be detected, even when present in the minutest amounts by means of such apparatus as a Geiger Muller tube or a scintillation counter. A Geiger Muller (GM) tube in its simplest form consists of an evacuated glass chamber containing traces of argon and alcohol vapour. An insulated wire passes down the centre, and a high potential is maintained between the wire and the walls of the tube. If the GM tube is now struck by a β or γ ray, the ionization set up between the central electrode and the wall of the tube causes a brief pulse of current to pass along the electrode. These pulses can be counted in an electrical device called a scaler.

Since radioactive isotopes break down to more stable atoms by giving off radio active emanations, it is convenient to measure isotopes in terms of their half lives. The half life of an isotope is the time during which half of the radioactive atoms decay to a stable form. Such a half life may last minutes, days or millions of years according to the characteristics of the element and it is clearly of great importance to know this where isotopes are to be used in the human body.

The unit quantity of all radio active material is the curie and since this represents a high degree of activity (3.7 x 10¹⁰ disintegrations per second) it is often convenient to use the term milli curie, written mc, for the thousandth part of a curie, and microcurie, written µc, for the millionth part of a curie.

Isotopes are usually represented by the symbol of the element preceded or followed by the mass number e.g. C¹² and C¹³ or C and C¹³ represent two radioactive isotopes of carbon.

Radioactive isotopes have been used in the surgical field mainly in three ways: to trace, to measure and for therapy. The use of radioactive isotopes as tracers offers a unique method of investigating fundamental biological problems. The radioactive isotope has the same chemical properties as its stable counterpart and is therefore treated by the tissues in the identical way. However, its radioactive emanations enable it to be detected even though present in amounts far smaller than are capable of measurement by chemical methods. For example, if a few microcuries of radioactive sodium (³¹Na) are injected intravenously into a patient, the radioactive sodium...
atoms rapidly spread to all parts of the body where stable sodium atoms are present. It thus becomes possible to trace the movement and distribution of sodium ions in the body in health and disease since a certain number of the sodium atoms are now tagged and their \(\beta \) rays can be detected by a Geiger-Müller counter. A specialized application of radioactive tracers of particular interest to the surgeon is in localization studies. For example, by means of radioactive phosphorus and a Geiger-Müller counter mounted in a brain needle it is possible to locate brain tumours. Similarly, radioactive iodine taken up by thyroid tissue can be mapped out by means of a counter held over the surface of the body.

Radioactive isotopes can also be used to measure various body fluids and to estimate the rate of metabolic processes in the intact human or animal. If a number of red blood cells are tagged with radioactive phosphorus they can be introduced into the patient’s blood stream and a sample of blood removed later will allow an accurate estimation of the blood volume to be deduced from the degree to which the tagged red cells have been diluted by normal ones. In a somewhat different manner radioactive sodium can be used to measure the adequacy of the circulation in the pedicled skin tube of the plastic surgeon.

In the field of therapy radioactive iodine has been the most widely used isotope being employed for treating hyperthyroidism and the metastases of some forms of thyroid cancer. Radioactive phosphorus \(^{32} \text{P} \) has been used for treating polycythemia and menorrhagia. Radioactive sodium and bromine have been introduced in solution into the urinary bladder for treating malignant disease. Radioactive gold also has been employed for intracavitary irradiation, a colloidal solution being introduced into the pleural or peritoneal cavity for treating multiple metastatic deposits. Finally, a number of solid metals more especially gold seeds tantalum wire and cobalt have been made radioactive by placing them in the pile with the result that they offer useful alternatives to radium for insertion into malignant tumours.

Special precautions have to be taken to prevent those handling radioactive isotopes from receiving a harmful amount of radiation. This becomes particularly important where isotopes are used therapeutically as for example in the treatment of thyroid cancer with radioactive iodine. Under these circumstances the dose has to be handled with precautions similar to those applicable to radium and in addition the patient’s urine has to be stored in lead shielded containers for a few days until its activity has decayed sufficiently for it to be safely flushed down the drain. The use
of isotopes demands a discipline which the surgeon may find at first
difficult to acquire and, in addition, few will be capable of under-
standing the physics of the problems involved. For this reason it
is desirable that the application of isotopes to clinical problems
should be in the hands of a group made up of a surgeon, a physician, and
a physicist, one of whom preferably is experienced in radiotherapy.

In order to indicate the ways in which isotopes may be of value in
surgery, a number of those in common use is listed below together
with a brief description of their characteristics and applications. It
should be realized, however, that these isotopes have been used only
in certain centres in this country and for five or six years at most
so that yet their limitations have scarcely been defined.

Radioactive Iodine

The isotope of iodine in common use is I^{131}, which emits most of its
energy in β rays but part in γ rays. Its half-life is eight days.

Tests of Thyroid Function It has been used in many different
ways as a test of thyroid function and has the merit of being largely
free from the subjective errors of clinical judgement. Hyperthyroid
patients show a more rapid accumulation of the isotope and retain
larger amounts for longer periods than normal. Hypothyroid
patients show a diminished uptake. Most normal people take
40 per cent or less of a tracer dose in the first forty-eight hours and
hyperthyroid patients amounts of over 60 per cent, according to the
severity of their disease. In practice a tracer dose of 5 to 10 micro-
curies of radioiodine is given by mouth to the fasting patient or
injected intravenously. The radioiodine is concentrated in the
thyroid and can be measured there by a γ-counter placed directly
over the neck. Simultaneously, the concentration in the blood can
be estimated by placing a γ-counter over the thigh and the
ratio of neck to thigh if plotted over one or two hours will give a
reliable index of thyroid activity. If a more accurate result is
required, serial samples of plasma can be counted and compared
with counts over the neck. If the uptake over the neck is then
replaced by the plasma level clearance rate for iodide is
obtained. In normal people about 20 ml of plasma are cleared
of iodide per minute.

Serial measurements over the neck and thigh take up much time
and if used for a routine diagnostic test in only be done in limited
numbers. For this reason, indirect measurements of thyroid
function made by collecting the urine after a tracer dose have some
advantage. The radioiodine not taken up by the thyroid is
excreted in the urine. The patient drinks 10 microcuries and is sent
away from hospital with containers for the collection of urine. If at least three periods are taken over a total time of not less than forty-eight hours, good discrimination is obtained between hyperthyroid and euthyroid individuals.

Localization Studies If a G M tube is shielded with lead in such a way that it only records the emanations from a tiny area, it becomes possible to map out the position and intensity of iodine uptake over the neck and elsewhere. This can be of value to the surgeon since all the thyroid tissue may be situated at the back of the tongue or along the course of the thyroglossal tract, or an enlarged thyroid may extend deeply into the mediastinum. In addition, when there is a swelling in the neck, it may be helpful to know which areas are taking up iodine normally and which are devoid of function.

The patient is given a tracer dose of 100 microcuries of radioiodine and thirty-six to forty-eight hours later a Perspex grid is laid over the neck. A special counter with lead shield and central lead core is designed so that it only records parallel rays and can then be held over each square for one to two minutes. The counts expressed as a percentage of the tracer dose are then plotted on graph paper and if lines are drawn through areas of equal iodine uptake a chart of function is obtained. These lines, which resemble the isobars of the meteorologist, produce a chart which in a normal patient closely resembles the anatomy of the gland.

A nodule in which no radioiodine is taken up is usually referred to as a cold nodule and if solitary and in a young patient from a non-irradiated area might raise the suspicion of malignant disease. A nodule taking up more radioiodine than the surrounding tissue is called the hot nodule and if associated with clinical signs of hyperthyroidism indicates that removal of the nodule will relieve the condition without recourse to a subtotal thyroidectomy.

Radioiodine Therapy of Hyperthyroidism See page 365

Radioactive Phosphorus

The radioactive isotope of phosphorus in common use is 32P which has the convenient half-life of 14.3 days and emits β rays of high energy. 32P gives off no penetrating γ rays and therefore can only be detected in vivo in the skin or very superficial structures. Alternatively, the counter must be introduced into the tissues.

One of the most valuable applications of 32P has been in the localization of brain tumours. Actively dividing cells such as are found in neoplasms have a rapid turnover rate of phosphorus reflecting the increased metabolism of nucleo proteins accompanying
nuclear division. Radioactive phosphorus is thus found in higher concentration in brain tumours than in the surrounding normal brain tissue with its relatively slow metabolism. The method used was evolved by Silverstone and depends for its success on a GM counter made in the form of a brain needle of 2 or 3 mm. diameter originally designed by Robinson. The patient is given 1 millicurie of ^{32}P about twenty four hours before operation and then the GM needle counter is introduced as a probe into the brain substance after the skull and dura have been opened. A scaler in the operating theatre shows the surgeon when the counting rate increases that is when the tumour is approached or entered. The counting rate in the tumour is five to fifty times as great as that obtained when the needle lies in normal brain substance. Morley and Jefferson in this country have reported results similar to the American workers.

In the field of therapy, ^{32}P has become the agent of choice for treating polycythemia. Actively dividing cells take up more of the isotope than resting ones and thus the more active components of the bone marrow are irradiated. Chronic myelogenous leukaemia is a recognized complication of polycythemia but following ^{32}P therapy, a number of acute leukaemias has been recorded. It is not yet possible to assess whether the incidence of leukaemia has been increased following this form of therapy.

Radioactive Sodium

Radioactive sodium has been employed both diagnostically and therapeutically. The isotope ^{24}Na is the one in common use. It gives off both β and γ rays and has the rather short half life of 14.8 hours which means that fresh supplies have to be obtained from Harwell at frequent intervals.

^{24}Na has been used extensively to study the circulation in peripheral vascular disease. The most satisfactory technique appears to be the injection of a small amount about 5 microcuries into a muscle and then the rate at which it is removed can be determined by making serial counts over it with a Geiger counter. On the whole the method has not proved useful in the routine investigation of patients with vascular disease. It has however been of particular value in the study of the vascularity of pedicled flaps as used in plastic surgical procedures. Barron and Veall have been able to demonstrate when the blood supply in such flaps is adequate enough to allow them to be detached and swung to the required site. By such methods much information has been gained about the blood supply of pedicled flaps and it has been possible to shorten the intervals between the various stages.
Radioactive Gold

Radioactive gold ^{198}Au has the short half-life of 27 days and emits high energy β rays and a lesser proportion of γ rays. It can readily be prepared as a colloidal solution and for this reason it has been used for introduction into the peritoneal and pleural cavities when they are the site of multiple malignant deposits. The colloidal particles come into contact with a wide surface area of the disease giving it a brief but intense dose of radiation. Such therapy has been called the ‘gold bath’.

In practice, about 100 mc of ^{198}Au in 100 ml or more of solution are introduced after paracentesis of the malignant effusion. There follows a variable period of nausea due to the irradiation and approximately half the patients treated in this way are improved. Occasionally this palliative treatment is remarkably successful the effusion not recurring for many months and there being a striking relief from pain and cachexia.

A second method of using radioactive colloidal gold which has been mainly pioneered in the United States is its injection directly into superficial tumours especially those on the face or in the breast. Multiple injections are made and a more uniform spread of the radioactivity in the tumour is obtained by adding hyaluronidase. In successful cases the tumour shrivels and is replaced by fibrous tissue. A further elaboration of this technique has been experimented with in Switzerland whereby the ^{198}Au is combined with pectin to form large particles which, when injected intravenously are selectively taken up by the lungs. A few patients with inoperable lung tumours have benefited from treatment in this manner.

References

General Reviews

ED LAWRENCE J H and HAMILTON J G 1948 Advances in Biological and Medical Physics New York

Discussion on Use of Isotopes in Surgery 1953 Proc Roy Soc Med 46 223

Discussion on Use of Isotopes in Neurology Ibid 220

Isotopes in Medicine 1952 Brit Med Bull 8 11a et seq

KAMEN M D 1951 Radioactive Tracers in Biology An Introduction to Tracer Methodology 2nd edit New York

LOW BEER B V A 1950 The Clinical Use of Radioactive Isotopes Springfield

MAYNEORD W 1950 Brit J Radiol Suppl 2

POPIAK G 1952 Certain Aspects of the Medical Application of Isotopic Tracers Quart J Med 81 83
nuclear division. Radioactive phosphorus is thus found in higher concentration in brain tumours than in the surrounding normal brain tissue with its relatively slow metabolism. The method used was evolved by Selverstone and depends for its success on a GM counter made in the form of a brain needle of 2 or 3 mm diameter originally designed by Robinson. The patient is given 1 millicurie of 32P about twenty-four hours before operation and then the GM needle counter is introduced as a probe into the brain substance after the skull and dura have been opened. A scaler in the operating theatre shows the surgeon when the counting rate increases that is when the tumour is approached or entered. The counting rate in the tumour is five to fifty times as great as that obtained when the needle lies in normal brain substance. Morley and Jefferson in this country have reported results similar to the American workers.

In the field of therapy, 3P has become the agent of choice for treating polycythemia. Actively dividing cells take up more of the isotope than resting ones and thus the more active components of the bone marrow are irradiated. Chronic myelogenous leukemia is a recognized complication of polycythemia but following 3P therapy a number of acute leukæmias has been recorded. It is not yet possible to assess whether the incidence of leukaemia has been increased following this form of therapy.

Radioactive Sodium

Radioactive sodium has been employed both diagnostically and therapeutically. The isotope 24Na is the one in common use. It gives off both β and γ rays and has the rather short half-life of 14.8 hours which means that fresh supplies have to be obtained from Harwell at frequent intervals.

24Na has been used extensively to study the circulation in peripheral vascular disease. The most satisfactory technique appears to be the injection of a small amount about 5 microcuries into a muscle and then the rate at which it is removed can be determined by making serial counts over it with a Geiger counter. On the whole the method has not proved useful in the routine investigation of patients with vascular disease. It has however been of particular value in the study of the vascularity of pedicled flaps as used in plastic surgical procedures. Barron and Veall have been able to demonstrate when the blood supply in such flaps is adequate enough to allow them to be detached and swung to the required site. By such methods much information has been gained about the blood supply of pedicled flaps and it has been possible to shorten the intervals between the various stages.
PART II—THE NERVOUS SYSTEM

D.W.C. NORTHFIELD

CHAPTER \#

CEREBRAL SURGERY IN MENTAL ILLNESS

The application of surgery to the treatment of mental illness by Moniz and Lima in 1935 has led to great activities in this field by all concerned. In an endeavour to place this form of treatment on a rational basis and to rid it of its empiricism there have been critical pre and post operative studies of the patients' various modifications of the standard leucotomy of Freeman and Watts have been attempted and painstaking anatomical examinations have been made of the brains of patients dying after the operation.

In the last edition of this volume it was pointed out that although leucotomy might not lead to any impairment of reasoning power or decrease of general intelligence there was usually a lowering of ethical values the patients are relieved of all sense of personal responsibility and of anxious self-questioning as to the ethical rightness of their conduct (Gollin 1946). In some cases more conspicuous disturbances arise aggressiveness inertia laziness and total disregard for the ordinary social code. Where leucotomy is carried out for the relief of the symptoms of a severe psychosis the pre-operative personality may be already so depraved that by contrast the result of leucotomy is a relative gain, but when the operation is performed for say a severe anxiety tension state damage to the personality by the operation may be so evident as to render its value questionable in that particular case. Considerable work has been carried out in devising suitable tests and criteria for classifying results. Some tests may be regarded as predominantly assessing intelligence and others memory some ability to form judgments and to solve problems the estimation of emotional reactions of ethical standards and of the reaction to the stresses of the social environment are outside the scope of formal tests and must depend upon the subjective opinion of observers. In order to arrive at a useful body of evidence it is advisable to study all possible approaches to the problem and the result of formal tests must not be given undue prominence. Freeman and Watts (1950)
ARNOTT D G EVERLY J W IRASPER R and HORSHON Q J C 1949 Lancet ii 460
EHRLY T P JEFFERSON G 1952 Brit Med J ii 575
MÜLLER J H Rossier I H 1951 Acta Radiologica 35 449
SCHIERSSTONE B SWERT W H and ROBINSON C V 1949 Arch F Surg 130 643
TAITOR S and STUART F S 1951 Lancet i 32
Mayer Gross (1947) is correct, that leucotomy if successful provides the patient with a new frame work of personality. This emphasizes the need for prolonged and careful post operative rehabilitation and assessment of home conditions to determine whether these and the relatives' affection, capabilities and intelligence are adequate for the responsibility.

Strom Olsen and Tow (1949) in an important paper have compared and contrasted the late results in two groups of patients 100 chronic severely disordered psychotics, inmates of a mental hospital, all with the worst prognosis—and 25 patients admitted to hospital specifically for the operation on account of severe neurotic depression, obsessive compulsive states and tense hypochondriasis. Operation in the first group (c) was undertaken to ameliorate severe behaviour disorder, but in the second group (a) the aim of operation was to secure full social rehabilitation. The results of operation have been studied under various categories, the effect upon the illness (i.e. the psychiatric symptoms) status of social level and adaptation, capacity for work and for pleasure and bad features. Such a classification brings forward important items which are not evident in many follow up figures, though evident enough when reading an individual case record. In group (a) the percentage relieved of symptoms was over twice that of group (c), but improvement under other headings was by no means proportionate. Three quarters were relieved but one half had permanent impairment of their power of enjoyment (this does not refer to sexual pleasure) and bad features were present in three quarters. The latter are personality changes which in group (c) might be residual psychotic traits, but in group (a) must be considered to be the result of leucotomy.

Although many tens of thousands of these operations have been carried out, post mortem material is only slowly becoming available. The most extensive studies of this material have been reported from the Maudsley Hospital by McLardy Meyer and Beck. In their various papers the site and the extent of the operative lesion have been carefully documented, the consecutive distant lesions in the brain detected and mapped, and where adequate clinical records have been available the relation between therapeutic result and lesion has been analysed. These painstaking studies have been rich in revelation, they have provided or confirmed anatomical data startled surgeons by the variability of the lesion nullified the notions and prejudices of certain theorists and shed light on some of the causes of death.

A variable and quite uncertain factor in the standard leucotomy
point out that personality must be considered as the sum of the intellectual emotional energetic components of the individual, and that defects in the intellectual and emotional domain are essentially inseparable. The intellectual equipment in the sense of past experience is undamaged but close examination discloses certain defects that become more obvious in cases of extensive incisions. These defects are manifest as an inability to solve difficult problems to carry in the mind several items at once, to synthesize ideas and to foresee the result of a sequence of actions. The capacity of an individual to project himself into the future is fundamentally disturbed in these patients. This type of disturbance corresponds to Goldstein's (1949) impairment of the abstract attitude. In a very illuminating and carefully documented study of patients undergoing leucotomy Partridge (1951) vividly portrays these finer intellectual changes which to formal tests may not be evident but are particularly noticeable within the family circle. The lead to this social assessment was given by Rylander (1939) and demands long periods of time spent in interviews with a patient and his relatives. In a total of 92 patients who recovered from their illness after leucotomy Partridge found an intellectual deficit of one sort or another in 84, most noticeable amongst those in the more highly skilled occupations.

In the sphere of emotion the patient after leucotomy is freed from anxiety from a sense of tension and from any inferiority complex and fails to think critically of his own behaviour in society. To some extent these changes are desirable for they are the aim of the surgeon but with them arise disturbances which when excessive prove most undesirable at any rate for society, though the patient may be undisturbed and well content. These personality changes are revealed in a variety of ways: a slowing of drive, a preference to postpone action and a lack of initiative a flattening of the emotions combined with a happy go lucky attitude to life and euphoria, a lack of restraint of word or behaviour which leads to remarks or situations embarrassing to others but not to the patient. In the more extreme cases gross selfishness obstinacy and complete lack of awareness of their hopelessly unreasonable attitude. Bursts of violent temper may occur which are quickly over and for which the patient shows no remorse.

Partridge reported that of 60 patients who recovered from affective disorders there were 17 who showed undesirable changes and in some of the others there were discernible changes of lesser degree. Improvement which continues for several years after operation is only to be expected if the opinion expressed by Frankl and
et al., 1948; Cort, 1915), in the brains of the second group of cases characterized by nutritional or trophic deterioration the common link was found in a severe bilateral lesion of the region of the subcallosal fasciculus at the level of the head of the caudate nucleus. Disturbances of water and electrolyte control at times associated with severe hypotension, and resulting from a variety of frontal lesions have been encountered by most neurosurgeons and reported by Allott (1939), Sweet et al. (1948), Higgins et al. (1951) and McCarty and Cooper (1951). In some of these cases the outstanding feature has been a retention of chloride, and this may be due to dehydration or to diminished blood volume (Borst, 1938; 1951). Whether this be so or whether there is some intrinsic upset of the fronto-hypothalamic hypothalamic hypothalamic adrenal mechanism is not yet evident. The work of Harris (1950) Le Crosse Clark and Meyer (1950) amongst many others shows that anatomically and physiologically such a mechanism is feasible. Certain it is, however, that not only are leucotomy lesions placed in the posterior part of the frontal lobe liable to lead to the grossest of intellectual and personality changes but they are also liable to be fatal by reason of profound biochemical disturbances.

A wider appreciation of the undesirable results which may follow what is nowadays conveniently called standard leucotomy has led to the development of alternative operations. Choice has been achieved by way of a variety of arguments in which animal experiment summarized by Fulton (1951) in his Salmon Memorial Lecture clinical observation analysis and theories based on cytarchitectonics have each played a part.

Some surgeons have thought that a more predictable and standard lesion would be obtained by performing leucotomy under direct vision. The technique of open leucotomy was described by Layer in 1938 but has only gradually acquired some popularity. Large trophic openings are made one either side of the middle line in front of the coronal suture and under direct vision using a good head lamp or illuminated deep retractors the brain is divided with a narrow suction tip which can also be used for the endothermy of bleeding vessels. Although the cut can be made as extensive as is deemed necessary in vertical and lateral directions there are no landmarks within the substance of the brain to indicate whether the cut is too anterior or too posterior, only a sense of direction neither more nor less accurate than that available to the experienced surgeon during the blind method. Enlargement upon the tip of the frontal horn of the ventricle is of little help as its size and position may vary within normal limits and in a number of patients
is the relation of the plane of the cut to structures within the brain. Rowland and Mettler (1948) have shown that the point of election for the trephine may overlap a point on the brain varying in different subjects up to 2 cm in antero posterior and in vertical directions. Thus the operation commences with a margin of error of 2 cm. Poppen believes that the plane of section must be within a zone of 2 cm but Freeman states that the margin of error is only 2 mm yet he has no method of detecting such an error. When the leucotome is made to traverse the brain substance according to its shape it will cleave easily or with difficulty. The brain will be displaced within the cranium according to the roominess of the subarachnoid spaces—a shrunken brain tends to be displaced rather than to be cut compared with one that more closely fills the cranium. This point was emphasized nearly ten years ago by Clar Maxell (1945). Variability in site and in extent of the cut is clearly proven in the post mortem studies by Meyer and McLardy (1949). They found the cut to fall within two planes which roughly define the middle one third of the middle frontal convolution, within these rough limits there is also much disparity in the direction which the cut takes relative to the plane of the coronal suture the extremes lying almost at right angles to one another. Great diversity also occurs in the extent to which the lesion occupies the cross sectional extent of the brain. Another unpredictable factor at the time of operation though evident enough in post mortem studies is the extent of the damage resulting from hemorrhage thrombosis necrosis and oedema of the brain beyond the confines of the narrow slit like cavity produced by the surgeon’s instrument. Yal ovlev Hamlin and Sweet (1950) show this particularly well in their post mortem specimens.

It is convenient at this point to refer to certain metabolic complications which may follow leucotomy and other lesions of the brain. In a series of 122 cases in which the brain was available McLardy (1950) found that post operative cerebral hemorrhage had been the cause of death in 31 and in all these the period of survival did not exceed fourteen days. In 22 patients death occurred within six months and these comprised two groups those dying in urämia about the third week and those with progressive lethargy wasting cutaneous bullae and ulceration dying between the second and fifth month. In the specimens of the first group where there had been urämia traumatic lesions were found in the posterior part of the orbital cortex. It may be of significance that stimulation of this area in the experimental animal has produced vegetative disturbances and interference with kidney function (Livingstone
On the assumption that the therapeutic benefits of leucotomy are due to division of the thalamic frontal projection fibres which stream forth from the anterior limb of the internal capsule, incomplete leucotomy has been carried out, the inferior part only of the white matter of the frontal lobe being cut. Hulton (1931) states that in Rivlander's experience damage to fibres projecting on the lateral surface of the frontal cortex causes impairment of intelligence which is but little evident after inferior cuts. Ablation of the posterior orbital cortex in monkeys is said to cause a great increase of motor activity (Livingstone et al., 1948), and the results of such experiments have been used as an argument for applying similar operations to overcome the passive withdrawn state of schizophrenia. Thorpe and Hardman (1952) have found that "lower quadrant leucotomy" is therapeutically as effective as a full cut with less risk of urinary incontinence and easier rehabilitation.

In 147 patients discharged from hospital there was a relapse in 18. Fgan (1949) reports a more thorough isolation of the orbital part of the frontal lobe, the inferior quadrant cut is made and from the upper end of this another cut is made forward. The most common post-operative changes were restlessness and irritability, reminiscent of the ablation experiments on monkeys. The cases included a majority of schizophrenics. The duration of the illness averaging ten years and the proportion improved was roughly similar to that following the standard operation. Personality changes occurred observational symptoms were less well relieved and relapse occurred in one fifth of all cases. An alternative type of partial leucotomy has been described by Grantham (1951) in which through a burre hole placed near the midline only the medial part of the cut is made. In order to improve accuracy the ventricle may be tapped and small quantity of air injected. Radiograms taken while the patient is on the table will show more precisely the position of the instrument. Recently he has employed endothermy for making the lesion. Long term results are not yet available nor are there any published records of post-mortem examinations, but the method seems worthy of extended trial.

In 1944-45 Penfield carried out a series of tentative operations on 7 patients who were candidates for leucotomy, excising various symmetrical areas of frontal cortex within the zone which could be disconnected from the thalamus by the lobotomy procedure if necessary. The aim was to secure the therapeutic effect of a leucotomy (syn lobotomy) but preserving more of the function of the frontal lobe. The position and size of the cortical ablations varied, some being entirely convexity between the tip of the pole.
it may be pathologically enlarged (Donovan et al. 1949). The post-mortem evidence adduced by Yakovlev and his associates does not support the contention that the lesion of an open leucotomy is more concave than that of the blind. The zone or thickness of the lesion was up to 20 mm where retraction and a sucker was used, and only up to 3 mm where a leucotome was employed. A more restricted form of operation is that designed by McKissock (1951) and called rostral leucotomy. Burr holes are made 2 cm from the middle line just in front of the coronal suture and the brain cut is made from this point in a plane passing through the junction of the anterior and middle one thirds of the roof of the orbit and about 2 cm in width. This operation has been employed for non-psychotic tension and affective states and considerable therapeutic effect is claimed with appreciably less personality change than with the standard leucotomy. Detailed psychological records comparing the results of the rostral and standard operations have been made by Petrie (1952). Transorbital leucotomy has been devised by Freeman who acknowledges Siamberti as the originator. A specially designed leucotome is inserted into the superior conjunctival fornix and driven through the roof of the orbit into the under surface of the frontal lobe. By suitable traversing movements of the handle of the leucotome the white matter of the inferior part of the frontal lobe can be divided in the coronal plane to a depth of 7 cm from the supra orbital margin. Further damage can be effected by making the deep frontal cut perpendicular to the coronal plane. The method does not require the panoply of a major operation the fornix being considered to be usually sterile and it can be carried out on a patient who has been rendered unconscious by an electroshock. Freeman (1951) has compared the results of the standard operation on 624 patients and the transorbital operation on 312 patients. In schizophrenia there was approximately the same percentage of good results though rather more patients were retained in hospital after the transorbital operation. In cases of affective and psychoneurotic disorder there were a greater number of good results after the transorbital operation and about the same percentage were in employment after both operations. Epilepsy was much less frequent after the transorbital than after the standard operation. It has not found many adherents, being even less precise than other methods and having a crude technique. Edwards (1950) considered that it is followed by less personality changes and thinks it of value in agitated depressions and in neurosis but of no value in obsessional states which have lasted more than two or three years.
Brodman based it upon the examination of the chimpanzee's brain and then drew a similar pattern on the human brain. Not only are the areas conjectural but their estimation upon the human brain partially exposed by craniotomy can be but guesswork conforming roughly to the larger areas. Their topographical registration on diagrams for record purposes and for application to further experience can also only be approximate by reason of the distortion due to the projection from a spheroidal to a plane surface. These limitations were recognized and accepted and the system adopted for the sake of convenience. The estimated total weight of brain removed varied from about 10 to 75 gm. The specimens were subjected to histological examination in order to confirm or refute their presumed cytoarchitectural site.

A follow-up of these patients and the reports of further studies have recently been published (1952) and the two volumes of the work of the Columbia Greystones Associates provide a mass of detailed information which cannot be summarized here though it is of the greatest value to those who study it closely. The criterion of improvement is discharge from hospital—not a satisfactory one, but its adoption is defended by the authors. Of 23 undergoing torectomy 11 patients were out of hospital for two or more years after the operation and of the controls 4 of 16 were out of hospital (without operation) and 3 of 8 who later underwent leucotomy were out of hospital. These bare statements cannot take into account the social status or rehabilitation of the patient. The conclusions which the Associates draw are very cautious; the discharge rate is greater in the operated than in the controls but this significance is obscured by certain variations in prognosis between groups and although there was a correlation between improvement and the occurrence of the project and this might be due to operation, nevertheless it might be related to the situation. There were no obvious psychological or physiological enduring alterations and no permanent loss of intelligence but there seemed to be a clear relation between social improvement and a decrease in anxiety and in complaint so far as these matters could be detected and measured by tests. Because of the grounds from which the operation was developed the following conclusion is important: that there was no evidence or cause to believe that recovery was necessarily related to ablations of areas 9 and 10. Hoch (1951) gives details of the results of torectomy in 105 patients comprising psychotics and non-psychotics all for several years and unrelieved by other forms of treatment. He pointed out that the results depended upon the degree of deterioration, a factor difficult of assessment. In those
and the coronal suture others extending on to the medial or orbital surfaces Penfield (1948) considered the results did not make the operation an acceptable substitute for leucotomy but drew the important conclusion that bilateral ablations of cortex in the postero superior part of the frontal convexity were the most likely to lead to intellectual deficit and ablations not including this area gave rise to little or none Psychiatric and psychological examinations of these 7 patients (Cameron and Prados 1948 Malmo 1948) revealed that in three more was gained than lost by deficit and in one of these the gain was considerable and that in all cases there was greater or less intelligence imparment but it was found impossible to correlate symptomatic improvement with localization of the lesion Epilepsy developed in 3 of the patients and 2 subsequently underwent leucotomy In 1948 Heath and Pool described the effects in 4 patients of bilateral ablations of part of the superior frontal convolution in 2 patients there was improvement of the mental state At the time of these operations Mettler was considering the need for an alternative operation to leucotomy and saw possible significance between the results he had obtained (1924) of removing Brodmann’s area 9 in simians and the finding that the part of the dorso medial nucleus which most frequently showed degenerative changes after leucotomy is that which projects to area 9 namely that the critical factor in leucotomy might be the isolation of area 9 From these beginnings developed the cooperative project of the Columbia Greystones Associates (1949) A series of 24 patients was subjected (much as in Penfield’s smaller series) to operation in which pre selected portions of the frontal cortex were excised the operation being called topectomy 24 other patients were selected as controls All the patients were psychotics and all had been in the same hospital for an average of four years and had been given the common varieties of treatment Great care was exercised in order to match the patients in pairs and all were housed together so that the special attention commonly given to patients having an operation was also provided for the controls Extensive tests covering physical as well as mental functions were carried out before and after operation In 23 of the patients the portions of cortex excised corresponded to certain of the Brodmann areas in various combinations and as removal of some of these areas inevitably damages cortical veins emptying into the longitudinal sinus in one case no brain tissue was excised but these veins were ligated As the authors—and others—the pains to emphasize the application of the Brodmann cytoarchitectonic map to the human brain is an act of faith and of conjecture
Brodmann based it upon the examination of the chimpanzee's brain and then drew a similar pattern on the human brain. Not only are the areas conjectural but their estimation upon the human brain partially exposed by craniotomy can be but guesswork conforming roughly to the larger areas. Their topographical registration on diagrams for record purposes and for application to further experience can also only be approximate by reason of the distortion due to the projection from a spheroidal to a plane surface. These limitations were recognized and accepted and the system adopted for the sake of convenience. The estimated total weight of brain removed varied from about 10 to 75 gm. The specimens were subjected to histological examination in order to confirm or refute their presumed cytoarchitectural site.

A follow-up of these patients and the reports of further studies have recently been published (1952) and the two volumes of the work of the Columbia Greystones Associates provide a mass of detailed information which cannot be summarized here, though it is of the greatest value to those who study it closely. The criterion of improvement is discharge from hospital—not a satisfactory one but its adoption is defended by the authors. Of 23 undergoing topectomy 11 patients were out of hospital for two or more years after the operation, and of the controls 4 of 16 were out of hospital (without operation) and 3 of 8 who later underwent leucotomy were out of hospital. These bare statements cannot take into account the social status or rehabilitation of the patient. The conclusions which the Associates draw are very cautious—the discharge rate is greater in the operated than in the controls but this significance is obscured by certain variations in prognosis between groups and although there was a correlation between improvement and the occurrence of the project and this might be due to operation, nevertheless it might be related to the situation. There were no obvious psychological or physiological enduring alterations and no permanent loss of intelligence but there seemed to be a clear relation between social improvement and a decrease in anxiety and in complaint so far as these matters could be detected and measured by tests. Because of the grounds from which the operation was developed the following conclusion is important that there was no evidence or cause to believe that recovery was necessarily related to ablations of areas 9 and 10. Hoch (1951) gives details of the results of topectomy in 105 patients comprising psychotics and non-psychotics ill for several years and unrelieved by other forms of treatment. He pointed out that the results depended upon the degree of deterioration—a factor difficult of assessment.
patients without deterioration there was good improvement in 60 per cent, but only in 7 per cent of those markedly deteriorated. In 68 schizophrenics there was sufficient improvement to leave hospital in only 11. The anatomical site of ablation bore little relation to the clinical result. In 1947, stimulated by the work of Pool similar operations were undertaken by Le Beau and in 1948 with Feld and Bouvet he set out the reasons why an approach to this problem on the basis of removing various Brodmann areas is preferable to leucotomy. Later (1951) he has recounted the difficulties of assessing results; these comprise the lack of precision in measuring mental impairment or improvement, the proportionate share to be assigned to spontaneous recovery, the inability to decide the cytoarchitectonic field of the intact brain and the unpredictable degree of incidental lesions produced by hemorrhage and ischamia at a distance from the operation field. He considers that in a psychosis it is necessary to remove some 20–25 gm of cortex on each side though there have been contradictory results when the operation was carried out for the relief of pain. There were 6 deaths in 76 leucotomies. 23 of the operations were successful in relieving pain compared with 9 in which this end was not achieved and 11 successes and 13 failures in operations for neurosis and for psychosis.

An important contribution to the surgical treatment of mental disorder has been made by the removal of the cingulate gyrus. This is based on the observation that ablation of this part of the cortex in the monkey (Ward 1948) leads to a striking tameness of the animal. Whether this is a result of the projection on to this area of fibres from the anterior thalamic nucleus which in turn receives the mamillo-thalamic tract and thereby connections from the hypothalamus and hippocampus (le Gros Clark 1948) is not known. Gleege Cole, Whitty and Cairns (1950) carried out experiments on 7 monkeys making lesions in the anterior cingulate gyrus and confirmed the previous observations. A continual restless pacing was also noticed in these animals as had been noted in animal experiments where other areas of frontal cortex had been removed. The authors were impressed that so small a lesion could produce such marked behaviour changes. They comment on the short duration of these changes and suggest that in the human even a temporary disturbance might allow of more fruitful psychotherapy. In 1952 Whitty Duffield Tow and Cairns published the results of cingullectomy in 20 patients of whom 1 died. In patients with a psychosis there was no worth while improvement but in 6 out of 8 other patients there was definite improvement and to such a degree
in 2 as to describe the illness as being cured. These observers were impressed by the slightness of personality deterioration which they could detect. Le Beau (1952) has also explored the effects of lesions in this area produced either by excision or by undercutting although in the latter case a wider area of the cortex of the medial surface of the hemisphere was damaged. These operations were carried out in a variety of cases and the results in the non-psychotic illnesses were much as in the Oxford series.

Operations for the excision of portions of cerebral cortex demand an osteoplastic craniotomy which takes considerable time. Damage to blood vessels may affect a much wider area of cortex than is anticipated; there may be a high potential risk of epilepsy. The operation of cortical undercutting was introduced by Scoville (1949) as an alternative method of interfering with the function of selected areas of cortex, and at the same time of avoiding the disadvantages of ablation. Three areas have been selected for isolation by this procedure: the convexity cortex (corresponding approximately to Brodmann areas 9 and 10 and thus somewhat similar in location to rostral leucotomy) part of the medial surface of the frontal lobe including the cingulate gyrus, and the inferior or orbital surface of the frontal lobe as far back as the vicinity of the chiasmal cistern. Access to the appropriate area of brain is obtained through large trephine holes and the cortex is undercut under direct vision for which good illumination is essential by means of suitably shaped retractors and fine suction instruments. The total area of cortex thus isolated is from 50 to 60 square centimetres. Scoville et al. (1951) and Wilk (1951) have described the results of these operations on 150 patients and compared them with a series of leucotomy operations. They find that each type of orbital undercutting gives as good a chance of improvement as leucotomy even in schizophrenia without however the same risk of personality change. An immediate effect was noticeable following convexity undercutting as contrasted with cingulate undercutting in which the benefit was slow in showing itself. This feature was noted by Cairns and his co-workers in their cases of cingulecotomy. Scoville et al. do not consider that there is any specificity in the area selected and quote the opinions of Busch Sjoquist and Rylander that no lowering of the intelligence quotient or disturbance of the abstract attitude follows orbital or superior surface undercuttings. Epilepsy occurred in about 6 per cent of cases.

Other types of operation have been recommended for the relief of mental illness but only one is of sufficient importance to warrant description. A stereotaxic technique has been devised by Spiegel
patients without deterioration there was good improvement in 60 per cent, but only in 7 per cent of those markedly deteriorated. In 68 schizophrenics there was sufficient improvement to leave hospital in only 11. The anatomical site of ablation bore little relation to the clinical result. In 1947, stimulated by the work of Pool similar operations were undertaken by Le Beau and in 1948 with Feld and Bouvet, he set out the reasons why an approach to this problem on the basis of removing various Brodmann areas is preferable to leucotomy. Later (1951) he has recounted the difficulties of assessing results; these comprise the lack of precision in measuring mental impairment or improvement, the proportionate share to be assigned to spontaneous recovery, the inability to decide the cytostrophic field of the intact brain and the unpredictable degree of incidental lesions produced by hemorrhage and ischemia at a distance from the operation field. He considers that in a psychosis it is necessary to remove some 20–25 gm of cortex on each side, though there have been contradictory results when the operation was carried out for the relief of pain. There were 6 deaths in 76 topectomies. 23 of the operations were successful in relieving pain compared with 9 in which this end was not achieved, and 11 successes and 13 failures in operations for neurosis and for psychosis.

An important contribution to the surgical treatment of mental disorder has been made by the removal of the cingulate gyrus. This is based on the observation that ablation of this part of the cortex in the monkey (Ward 1948) leads to a striking tameness of the animal. Whether this is a result of the projection on to this area of fibres from the anterior thalamic nucleus which in turn receives the mamillothalamic tract and thereby connections from the hypothalamus and hippocampus (le Gros Clark 1948) is not known. Glee, Cole Whitty and Cairns (1950) carried out experiments on 7 monkeys making lesions in the anterior cingulate gyrus and confirmed the previous observations. A continual restless pacing was also noticed in these animals as had been noted in animal experiments where other areas of frontal cortex had been removed. The authors were impressed that so small a lesion could produce such marked behaviour changes; they comment on the short duration of these changes and suggest that in the human even a temporary disturbance might allow of more fruitful psychotherapy.

In 1952 Whitty, Duffield, and Tow and Cairns published the results of cingulectomy in 20 patients of whom 1 died. In patients with a psychosis there was no worth while improvement but in 6 out of 8 other patients there was definite improvement and to such a degree
in 2 as to describe the illness as being cured. These observers were impressed by the slightness of personality deterioration which they could detect. Le Beau (1922) has also explored the effects of lesions in this area produced either by excision or by undercutting although in the latter case a wider area of the cortex of the medial surface of the hemisphere was damaged. These operations were carried out in a variety of cases and the results in the non-psychotic illnesses were much as in the Oxford series.

Operations for the excision of portions of cerebral cortex demand an osteoplastic craniotomy which takes considerable time. Damage to blood vessels may affect a much wider area of cortex than is anticipated: there may be a high potential risk of epilepsy. The operation of cortical undercutting was introduced by Scoville (1949) as an alternative method of interfering with the function of selected areas of cortex and at the same time of avoiding the disadvantages of ablation. Three areas have been selected for isolation by this procedure: the convexity cortex (corresponding approximately to Brodmann areas 9 and 10 and thus somewhat similar in location to rostral leucotomy) part of the medial surface of the frontal lobes; including the cingulate gyrus and the inferior or orbital surface of the frontal lobe as far back as the vicinity of the cingulum cingulum. Access to the appropriate area of brain is obtained through large trephine holes and the cortex is undercut under direct vision for which good illumination is essential by means of suitably shaped retractors and fine suction instruments. The total area of cortex thus isolated is from 50 to 60 square centimetres. Scoville et al. (1951) and Walk (1951) have described the results of these operations on 150 patients and compared them with a series of leucotomy operations. They find that each type of orbital undercutting gives as good a chance of improvement as leucotomy even in schizo-
phrenia without however the same risk of personality change. An immediate effect was noticeable following convexity undercutting as contrasted with cingulate undercutting in which the benefit was slow in showing itself. This feature was noted by Cairns and his co-workers in their cases of cingulectomy. Scoville et al. do not consider that there is any specificity in the area selected and quote the opinions of Busch, Sjoqvist and Rylander that no lowering of the intelligence quotient or disturbance of the abstract attitude follows orbital or superior surface undercutting. 13 epilepsy occurred in about 6 per cent of cases.

Other types of operation have been recommended for the relief of mental illness but only one is of sufficient importance to warrant description. A stereotaxic technique has been devised by Spiegel
and Wycis based on that of Horsley and Clarke by which lesions are made within the thalamus itself so as to damage selected groups of nerve cells. The technique and apparatus have necessitated much study of anatomical structures and relations because the accurate placement of the desired lesion is based upon reference by measurement within the patient's skull to the pineal gland. If this structure is not sufficiently calcified to be visible on an X-ray film encephalography is carried out in order to visualize the suprapineal recess or other identifiable structure of the third ventricle. The apparatus is a complicated piece of precision engineering, and with the technique the necessary brain atlas is fully described by Spiegel and Wycis in Stereo encephalotomy (1952). The lesions may be made by electrolysis or by electro coagulation although the accuracy with which they can be placed has been questioned but the post mortem evidence provided by the illustrations of the brains of 4 cases published in their volume is impressive. These methods are as yet in a tentative stage so far as human surgery is concerned though they have been used for many years in animal experiments and found reliable. They are more time consuming than other procedures but are likely to become less so as experience grows. It is a technique which may be increasingly adopted for those forms of cerebral surgery in which deeply placed precise and limited lesions need to be inflicted. The results of the operation in 56 patients are described by Spiegel and Freed (1951). 79 operations were carried out with 2 deaths. Bilateral lesions were made (a) in the dorso medial nucleus (b) in the anterior nucleus of the thalamus (c) in the lateral part of the posterior hypothalamus. The mental disorders were mainly schizophrenia. 25 per cent of the patients returned home working to a greater or less degree and 25 per cent were more easily manageable but were retained in hospital. In no patient was there marked disturbance of personality and in only one did epilepsy develop. Following this lead stereotaxic methods have been explored by others. Talairach et al (1949) used a grid projected upon the air filled ventricle and seen in an X-ray film as a device for localization. Lel seil (1949) places an electrolytic lesion just anterior to the anterior limb of the internal capsule roughly in the site of the standard leucotomy incision but of much smaller extent.

Conclusions

A massive literature has emerged in the last decade devoted to the cerebral surgery of mental illness and the busy surgeon fully occupied with other operations on the nervous system can hardly
hope to cover it. In this review only the seemingly more important articles are mentioned and doubtless many others have been missed. But no neurosurgeon worthy of the name however busy he may be will wish to embark on these operations which carry such grave responsibilities for the patient and for the community as a whole without serious meditation. In other branches of his work he is confronted with tangible pathological lessons which more often than not if untreated will lead to the patient’s death. His aim is usually quite clear-cut and simple and the risks of operation measurable by the obvious criteria of the mortality rate and of disability due to some neurological deficit. When he applies his activities in the field of mental illness all the normal criteria are absent. Mortality rate is relatively low at any rate in certain operations the degree of skill which he may appear to need or to exert is so slight that a particular operation may gain adherence because so many can be performed within the hour. On the other hand he can choose an operation lasting several hours and demanding the patience and endurance of any other major craniotomy and curing the same post-operative complications. He will work in a field in which by contrast with his more usual one there are no objective neurological abnormalities and in which the illness is described in a technical jargon which to him may at first be unintelligible—and thereby may acquire a false importance for him—and usually remains partly so. He is undertaking to relieve by a would-be rational organic method an illness which has no proven pathological basis. Finally and probably this the most important burden for his sense of responsibility, he finds his operations often unpredictable in the extent to which they alleviate mental suffering and when they do give relief the unfortunate personality may be so changed that the relatives object to having him home if he reaches home subtle changes in the personality may still be sufficient to reduce drive so as to make him unemployable. In this as in his other fields of work the neurosurgeon has his pleasant surprises which compensate for disappointment and tempt him to persevere.

It is now well established by experience that a wide variety of operations on the frontal lobe—and indeed on other parts of the brain—will in certain cases of mental disorder greatly relieve symptoms. Such successful results occur with regularity and considerable frequency in those non-psychotic conditions manifesting tension, anxiety and agitation and the syndromes described as compulsion, obsession and rumination and in the affective disturbances of depression and of melancholia. In the psychoses, particularly schizophrenia, provided the illness is not of
too long a duration and the personality not too disintegrated, improvement may less frequently occur and on occasion to a totally unexpected degree. Such improvement then seems to be the result of destroying or diminishing an element of tension in the patient's mind and invoking such a degree of temporary dissolution or disturbance of the personality as to allow a new pattern of behaviour to be built up by appropriate rehabilitation. If relapse occurs it takes on a pattern similar to that which characterized the original illness. In every case the operation is only one part of the treatment. Recovery and maintenance of recovery depend largely on a satisfactory environment. Return to that environment in which the original breakdown occurred invites relapse.

Do we yet know the anatomico physiological basis of these operations and which is preferable in any particular case? Clinical experience with leucotomy has made it clear that its effects are the more pronounced the more extensive and the further posterior the lesion happens to be. And pari passu the undesirable effects may then predominate. There is some evidence though not fully supported by anatomical studies that partial inferior and partial medial cuts can be as beneficial as total cuts with less undesirable qualities but to these lesions no more precise term can be applied than partial which of itself gives by anatomical standards but a vague approximation of location and of extent. The so-called selective operations of ablation and of undercutting are more precise in the sense that the extent of the lesion and its placement are more under the control of the surgeon but not fully so because of distant effects resulting from the disturbance of blood supply and from bruising. Critical assessment of the results of these operations is made difficult by the varying criteria of improvement and in some papers by the lack of detailed long term follow up. But it seems likely that all such operations may have broadly similar results that none is as drastic as the standard leucotomy and yet they may give as good results in patients with non psychotic illness with less personality damage and less impairment of abstract intelligence. The most restricted lesion giving reliable benefit seems to be cingulotomy though time may show that the small deep lesion produced stereotaxically may prove as beneficial. Like partial and anterior leucotomy these operations appear to give less enduring benefit in schizophrenics.

The application of the results of animal experiments to this branch of surgery has been fruitful in so far as it has stimulated the variety of form of operation. But direct comparison of the effects of frontal lobe operations on animal performance with operations
on the human brain for mental disturbance are unimpressive and indeed ludicrous. The would be basis of much of the surgery is extraarchitecture of the value and reliability of which there is considerable doubt. Certain it is that any operation based on ablation of particular areas must not be given for that reason a scientific cachet. The papers of La brie and Clark (1916) Bades (1950) and Le Gros Clark (1952) make it clear that excessive extraarchitecture parcellation of the frontal cortex can no longer be maintained as anatomically sound. Beck, McLardy and Meyer (1950) have demonstrated the great variability in the extent of the granular frontal cortex on either side of the brain and from subject to subject and state that no claim to remove particular areas is valid. Contradictory results abound so conflicting that at times one hesitates to accept any certain anatomical basis for the operation and this reminds us of its essential empiricism. McGrath (1951) reports the case of a woman with paranoid schizophrenia treated by leucotomy with such success that she was considered to have recovered and she earned her living. She died five years after the operation as the result of coronary thrombosis. The leucotomy lesions occupied most of the central and lateral parts of the white matter at the plane of the tip of the caudate nucleus involving much of the anterior thalamic radiations to the convexity frontal cortex. Extensive retrograde degeneration was found in certain thalamic nuclei. McGrath considered that this case confirmed the view widely held that there is a quantitative relationship between benefit and the isolation of frontal cortex from thalamic connections. On the other hand McLardy and Davis (1949) reported the extent of the lesion in relapsed cases thereby putting on record that psychotic illness can recur after virtually complete isolation of frontal cortex and even bilateral lobectomies. Neurotic symptoms may recur after lesser lesions. Analysis of the lesions of leucotomy by Meyer and McLardy (1949) has shown that the central segment of the cross section of the frontal lobe is the most frequently damaged in cases showing improvement and the ventral dorsal and the cingulate segments with diminishing frequency. So far as they could judge there was no evidence that localization of faculties occurred in the prefrontal region and the beneficial effects ran parallel with the size of the lesion. There was no support for the contention that orbital lesions lead to euphoria and dorsal ones to apathy. It is probable that cutting the central segment of white matter is important for the reason that here the thalamic projection fibres are finishing out. It is a strategically potent area. Although there appears to be this quantitative relationship
between cross-sectional extent of the lesion and clinical benefit, its position in the antero posterior direction must also be borne in mind there is a three dimensional relationship. It is this which may account for unexpected benefits following minimal lesions, reported by Meyer and Beck (1945) in their first paper. One recalls also the experience of the Columbia Greystones Associates of the need for carrying controls who sustain the same intense interest as the patients operated upon.

Leucotomy still maintains its position as the operation likely to achieve most benefit in cases of schizophrenia and there is a place for repeating the operation making the cut in a more posterior plane where a previous less drastic operation has failed. For the various tension neurotic states a choice of operations is available all having proved of some value and of which cingulectomy and orbital undercutting seem at present the most useful. Stereotaxic lesions may prove to be the most selective in the anatomical sense but the complicated techniques at present limit the application of these operations. In every patient in whom operation is under consideration the surgeon should have an assurance that all alternative treatments have been tried and have failed or are at any rate unsuitable and that spontaneous improvement is not to be expected. He should realize that his operation is still an empirical one — a coarse weapon with which to attack the maladjustments of humanity most recently required and delicate attributes he must, eschew pseudo scientific jargon and explanations which merely veil our ignorance. In assessing the results not only must due attention be paid to the relief of symptoms but also to the cost to the patient by loss of personality of abstract thinking and of the power of human enjoyment. Although much benefit may follow operation epilepsy is a sequel in an appreciable number of cases least likely to occur following stereotaxic lesions and probably most frequent after ablation of cortex.

References

Allott E A 1939 Lancet i 163
Bailey P 1950 J Neuropath Exp Neurol 9 318
Bailey P 1950 R J Neurol 82 3
Borst J G G 1938 Act Med Scand 97 58
Borst J G G 1939 Lancet ii 857
Cameron D L Phados M D 1948 Perspect Ann Rev Ment Dis 27 34
Clark Maxwell A S 1947 J Ment Sci 91 423
Columbia Greystones Associates Selective Partial Ablation of the Frontal Cortex 1949 Hoeber New York
REFERENCES

COLUMBIA CITY TIMES-AMERICAN 1
between cross sectional extent of the lesion and clinical benefit its position in the antero posterior direction must also be borne in mind there is a three dimensional relationship. It is this which must account for unexpected benefits following minimal lesions reported by Meyer and Beck (1945) in their first paper. One recalls also the experience of the Columbia Greystones Associates of the need for carrying controls who sustain the same intense interest as the patients operated upon.

Leucotomy still maintains its position as the operation likely to achieve most benefit in cases of schizophrenia and there is a place for repeating the operation making the cut in a more posterior plane where a previous less drastic operation has failed. For the various tension neurotic states a choice of operations is available all having proved of some value and of which cingulotomy and orbital undercutting seem at present the most useful. Stereotaxic lesions may prove to be the most selective in the anatomical sense but the complicated techniques at present limit the application of these operations. In every patient in whom operation is under consideration the surgeon should have an assurance that all alternative treatments have been tried and have failed or are at any rate unsuitable and that spontaneous improvement is not to be expected. He should realize that his operation is still an empirical one—a crude weapon with which to attack the maladjustments of humanity's most recently acquired and delicate attributes he must eschew pseudo scientific jargon and explanations which merely veil our ignorance. In assessing the results not only must due attention be paid to the relief of symptoms but also to the cost to the patient by loss of personality of abstract thinking and of the power of human enjoyment. Although much benefit may follow operation epilepsy is a sequel in an appreciable number of cases least likely to occur following stereotaxic lesions and probably most frequent after ablation of cortex.

References

Allott E N 1939 Lancet 1 1035
Bailey P 1950 J Neuropath Exp Neurol 9 918
Bailey I 1950 Rev neurol 82 3
Borst J G G 1938 Act Med Scand 97 64
Borst J G G 1941 Lancet 1 887
Campion D P Prados M D 1948 Rev Publ Ass Nerv Ment Dis 27 351
Clari Maxwell A S 1941 J Ment Sci 91 423
Columbia Greystones Associates Selective Partial Ablation of the Frontal Cortex 1949 Hoeber New York

CORT I H 1948 Quoted in I J A N V 12 D 27 410

DINNAN J L CALBRAITH A J JACKSON H 1949 J Ment Sc 95 1

EDWARDS A M 1949 J Ment Sc 95 95

EYMAN C 1949 J Ment Sc 95 1

FRANCHI I MAXER CROSS W 1947 Lancet 12 8

FRIEDMAN W 1945 Surg Clin Obs 92 107

FRIEDMAN W WATTIS W 1949 Psychol Med 19 0 2011 1 10 11 Blatchford

GALTON I E Frontal Lobectomy and Mental Behaviour. 1941

CHAPMAN & HALL, LONDON

GARMAN C 1948 J Ment Sc 94 448

GATES P COLLI I WHITTY C W M GARNER H 1940 J Neur Neurosurg Psychiat 13 1

COLLINS J 1946 J Neurol Sci Med 39 447

COLDSTON K 1949 J Neurol Ment Dis 110 97

CHANTHAM I C 1949 J Neumy 8 40

CURTIS H 1940 Brit Med J 6 1 77

DEATH R C LOOM 11 1948 J Neurol Ment Dis 107 411

HICKS (J W DICKIN J B R TAYLOR W H 1944 Lancet 12)

HOGH C H 1940 J Neurol Ment Dis 107 411

HACHINE K S CLARK C 1947 J Comp Neurol 85 227

BEAU J BEAU J B天 M 1948 Res Neurol 80 48

BEAU J 1942 Acta Psych et Neuroland 27 30

BEAU J 1941 J Ment Sc 97 48

BEAU J CLARK W 1942 Brain 75 90

CLARK W J 1948 Lancet 1 9

CLARK W J MEYER M 1940 Brit Med J Bull 6 1 76

LEWIS 1940 Acta Psychiat 99 20

LYTHRE J S 1948 J Fio Med Ass 25 203

MACARTY C S GOODMAN J S 1942 J Neurol Ment Dis 26 10

MCRATH S D 1941 Lancet 38

MCKINNON A 1941 Lancet 91

MCKINNON T 1940 J Neurol Ment Dis 13 106

MCKINNON T DAVIS D 1940 J Neurol Ment Dis 12 231

MCKINNON T MEYER T 1940 J Ment Sc 95 182

MALMO R B 1948 Res lussl Ann Neurol Ment Dis 27 47

METTLE A 1944 J Comp Neurol 81 10

MEYER A 1945 J Ment Sc 91 411

MEYER A MCKINNON T 1949 J Ment Sc 95 403

FISHER D M 1939 Proc Frontal Leucotomy Blackwell Oxford

PENFIELD W 1948 Res lussl Ann Neurol Ment Dis 27 47

PETRIE A 1942 J Ment Sc 98 374

REISS A R 1948 J Comp Neurol 89 21

REYLANDER G Personality Changes after Operations on the Frontal Lobes. 1939 Humphrey Milford London

SOVINSKI W B J 1949 J Neurosurg 6 62

SOVINSKI W B J WILK F H E IFFEL A J 1944 Am J Psychol 70 130

STEWART W 1944 J Ment Sc 95 95

THOMAS C S EDWARDS I YAKOVA 1948 Res lussl Ann Neurol Ment Dis 27 96

THOMSON W 1941 Surg Clin Obs 92 107

THOMSON W WATTIS W 1949 Sereence Encephalotomy. 1949 HUMMANN, LONDON
STRÖM OLSEN R TOW P M 1949 Lancet 1 87
TALAIRACH J HÉCAEN H DAVID M MONNIER M AJURIAGUERRA J 1949 Rev Neurol 81 4
THORPE F T HARDMAN J 1952 J Ment Sci 108 389
WARD A A 1948 Rev Publ Ass Peri Ment Dis 27 438
WHITTY C W M DUFFIELD J E TOW P M CAIRNS H 1952 Lancet 1 475
WILK E K 1951 Surg Gyn Obst 92 611
YAKOVLEV P I HAMLIN H SWEET W H 1950 J Neuropath exp Neu 9 250
CHAPTER XXXI

THE SURGICAL TREATMENT OF EPILEPSY

EPILEPSY has been an attractive subject to surgeons throughout the ages and indeed until the era of MacEwen, Godlee and Horsley cases of head injury and of epilepsy comprised the chief material for cranial operations. Although isolated reports of "successful" operations for epilepsy are available in the early literature, such definitive operations on the closed cranium relied for localization upon the evidence of a scar, or of a depression in the bone. But, in common with all forms of surgery, there was a heavy mortality as a result of wound infection. The latter part of the last century saw the enunciation and acceptance of the principles of cerebral localization and the development of aseptic surgery, thereafter modern neurosurgery began rapidly to evolve. In the first quarter of this century surgeons largely confined their activities to the successful extirpation of intracranial tumours and other space occupying lesions, and to the study of the natural history of these lesions and to the problems of intracranial hydrodynamics. These were urgent matters needing priority and consequently interest in epilepsy as a surgical subject waned except in so far as it was symptomatic of an expanding lesion. The results of such operations for epilepsy as were occasionally reported were not encouraging, thus further persuading the neurosurgeon to direct his attentions to a more rewarding field. In 1921 Penfield commenced a study of the healing of experimental brain wounds and later extended this to a series of brain scars from cases of traumatic epilepsy derived from the clinic of Foerster. Since that time there has been a steady growth of knowledge concerning the mechanisms of epilepsy and its surgical treatment and most of the credit for these advances must go to Penfield. Not only has he supplied a great stimulus in this field but his observations on the various cerebral lesions and on the neurophysiology of the cortex exposed in patients under a local anaesthetic have been of the greatest value. In recent years the introduction of certain ancillary methods of investigation has added a further impetus to this expanding field. Encephalography and ventriculography can demonstrate local or general atrophy of the brain, angiography has made it possible to reveal radiographically the presence of unsuspected vascular abnormalities and electroencephalography has provided a method of distinguishing certain varieties of epilepsy.
and of accurately localizing and defining areas of cortical discharge.

The indications for operation comprise the establishment of a focal origin of the seizure and of its location, the demonstration of its accessibility for surgical removal without undue residual disability, the diagnosis of the pathological nature of the lesion, which however may often be a matter of conjecture, the failure of medical treatment.

Classification of the type of seizure depends primarily upon a study of its pattern. This demands a careful enquiry of the patient and of reliable witnesses of attacks. The various focal attacks which may occur cannot be listed here; they are to be found in current textbooks of neurology and are exhaustively discussed by Penfield and Erickson (1941). Of particular importance is the initial disturbance or aura which Penfield considers to be of the greatest localizing value. Kristensen (1949) analysed 223 cases of focal cerebral seizures from Penfield's clinic in which the localization of the focus had been studied before and during operation and compiled the following table:

Initial Phenomenon in 222 Cases of Focal Cerebral Seizures

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconsciousness</td>
<td>14</td>
</tr>
<tr>
<td>Motor (Jacl orien adverse)</td>
<td>13</td>
</tr>
<tr>
<td>Somatic sensory</td>
<td>25</td>
</tr>
<tr>
<td>Visual auditory etc</td>
<td>12</td>
</tr>
<tr>
<td>Autonomic (mainly abdominal aura)</td>
<td>12</td>
</tr>
<tr>
<td>Psychical (including hallucinations and illusions)</td>
<td>13</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>11</td>
</tr>
</tbody>
</table>

The significance for localization of the study of the seizure pattern is clearly dependant upon our knowledge of the function of the various areas of the cerebral cortex and it is in this field that Penfield and his associates have made such contributions. Observations upon the effects of stimulating the cortex on patients under a local anaesthetic and the results of cortical ablation have recently been recorded by Penfield and Rasmussen (1950).

Little need be said here of the necessity for careful radiological examination. Simple films of the skull and air encephalograms are necessary to exclude—or to identify—tumours, calcified intra-cerebral lesions and to demonstrate the presence and extent of brain atrophy. In chosen cases angiography will be of value in elucidating the pathological nature of the epileptogenic lesion.
The electroencephalogram (EEG) can provide information of the greatest assistance in classifying the type of seizure and in localizing a focus of discharge. A scar, a rapidly growing tumour, a cyst or an abscess is electrically inactive and where such a lesion is sufficiently large and close to or replacing the cortex the records taken with scalp electrodes may bear witness to a diminution or an abnormality of activity. Porencephalic cysts and subdural haematoma in particular reduce activity. Abnormal electrical rhythms may arise from imperfectly functioning nerve cells bordering the lesion or involved in it and it is in these records that the characteristics of an epileptic EEG are found. The shape, frequency and distribution of the abnormal wave forms provide the information on which classification can be made. A limit to the accuracy of localization of the abnormal focus is imposed by the distance which separates the scalp electrodes from the cortex, a distance varying in different persons from 10 to 15 mm. By using multiple scalp electrodes feeding a multi-channel recording apparatus, the surface of the head can be charted in areas of about 1 cm diameter. Pharyngeal tympanic and sphenoidal leads aid the investigation of the basal surface of the cerebrum. These records provide adequate localization for diagnosis and for the planning of a craniotomy. Precision can be obtained later by placing electrodes on the exposed surface of the brain such a record being called an electrocorticogram (EECoG). Localized cortical foci of discharge produce a localized abnormality of the EEG. If the focus is derived from deep structures and particularly when contamed in the temporal lobe, the abnormalities may be bilateral. The activity in the opposite hemisphere may be seen to develop in the course of several months of observation, but the original focus commonly gives the greater abnormality. It is impracticable and out of place to describe here the varieties of EEG which occur in epilepsy; these are found in the writings of Penfield and Erickson, Jasper (1949), Hill and Parr (1950) and others. The most reliable EEG abnormality in focal epilepsy is the appearance at random intervals of the form of wave called a spike. Its name fully describes its shape: there being a sudden large alteration of electrical potential (100-150 microvolts) of transient duration (10-40 milliseconds). A variant of the spike is the result of its being conducted over a greater distance (Jasper 1949) is the sharp wave which has a broader base lasting from 50 to 100 milliseconds. They may be random occurrences or there may be runs of up to six per second. Occasionally runs of delta rhythm (two to three per second) and of sharp waves at ten per second may occur. Jasper and Kershmann (1949) emphasize the
great variety of localized wave form which has been encountered in epileptic patients in whom cortical lesions have subsequently been identified. It is possible that in some cases secondary thalamic disturbances have occurred. Some observations in support of such changes in "focal epilepsy" and their significance in explaining unsuccessful operations are made by Myers et al. (1950). If the EEG shows no abnormality the examination should be repeated under conditions which will help to bring out a latent abnormality. Such activation may be achieved by inducing sleep with secobarbital or by intravenous injection of metrazol. Jasper and Penfield (1948) found a focal EEG abnormality in 90 per cent of their cases of traumatic epilepsy and in 70 per cent the record showed spikes or sharp waves. Walker (1949) gives a lower estimate (70 per cent) of the incidence of localized EEG abnormality in post-traumatic epilepsy. Penfield and Steelman (1947) found that in 59 cases of focal epilepsy in which the lesion was excised the EEG showed a simple spike or sharp wave focus only in 21, and a similar focus but with contralateral transmission in 16.

The aim of operation is to remove the epileptic focus and where evident the pathological lesion. According to the area of cortex involved this resection may permissibly be radical so as to include a bordering zone of apparently healthy tissue in other parts of the brain the resection must necessarily be restricted to a minimum. Local anaesthesia is preferable so that the patient can help by describing his sensations but sometimes it may be necessary to carry out the operation under a general anaesthetic and satisfactory electrical recording can be obtained if pentothal is used. Or the operation may be divided into two stages a general anaesthetic being used for the cutting of the flap and on a subsequent day the wound can be reopened under local anaesthesia for the cortical procedure. In cases of healed compound fracture when scar tissue may unite the scalp the edges of the bone defect and the brain special care must be taken during the dissection of the several layers to avoid damaging the underlying brain by traction. Where the exposed cortex includes the motor area it is usual to identify this by stimulating it with a suitable current. Walker (1949) points out that if a scar is present in the vicinity of the motor cortex there may be difficulty in identifying the latter by stimulation owing to its having been damaged at the time of the original injury and that this difficulty lessens the longer the operation is delayed after the injury. Care should be taken to use a minimal stimulus in order to avoid provoking a generalized seizure, which may so depress cortical activity as to prevent further satisfactory study.
great variety of localized waveform which has been encountered in epileptic patients in whom cortical lesions have subsequently been identified. It is possible that in some cases secondary thalamic disturbances have occurred. Some observations in support of such changes in "focal epilepsy" and their significance in explaining unsuccessful operations are made by Myers et al. (1950). If the E.E.G. shows no abnormality, the examination should be repeated under conditions which will help to bring out a latent abnormality. Such "activation" may be achieved by inducing sleep with secobarbital or by intravenous injection of metrazol. Jasper and Penfield (1948) found a focal E.E.G. abnormality in 90 per cent of their cases of traumatic epilepsy, and in 70 per cent the record showed spikes or sharp waves. Walker (1949) gives a lower estimate (70 per cent) of the incidence of localized E.E.G. abnormality in post-traumatic epilepsy. Penfield and Steelman (1947) found that in 50 cases of focal epilepsy in which the lesion was excised, the E.E.G. showed a simple spike or sharp wave focus only in 21 and a similar focus but with contralateral transmission in 16.

The aim of operation is to remove the epileptic focus and where evident the pathological lesion. According to the area of cortex involved this resection may permissibly be radical so as to include a bordering zone of apparently healthy tissue in other parts of the brain the resection must necessarily be restricted to a minimum. Local anesthesia is preferable so that the patient can help by describing his sensations but sometimes it may be necessary to carry out the operation under a general anesthetic and satisfactory electrical recording can be obtained if pentothal is used. Or the operation may be divided into two stages, a general anesthetic being used for the cutting of the flap and on a subsequent day the wound can be reopened under local anesthesia for the cortical procedure. In cases of healed compound fracture when scar tissue may unite the scalp the edges of the bone defect and the brain, special care must be taken during the dissection of the several layers to avoid damaging the underlying brain by traction. Where the exposed cortex includes the motor area it is usual to identify this by stimulating it with a suitable current. Walker (1949) points out that if a scar is present in the vicinity of the motor cortex there may be difficulty in identifying the latter by stimulation, owing to its having been damaged at the time of the original injury and that this difficulty lessens the longer the operation is delayed after the injury. Care should be taken to use a minimal stimulus in order to avoid provoking a generalized seizure which may so depress cortical activity as to prevent further satisfactory study.
drugs are given after the operation and should be continued for several years.

The detailed results of operation for focal epilepsy on 165 patients have been given by Penfield and Ricketson (1941). There were 7 deaths and 3 patients could not be traced. In 75 no cortical extirpation was carried out. Of the remaining 115 patients nearly one half remained free from attacks for the period of follow up (one to ten years) or had had not more than two seizures. In about 30 per cent there was either no change or only slight improvement. The percentage of improved cases showed a slight fall during the first two or three years after operation but then remained steady. It was found in the cases of meningo-cerebral scars that the results were more likely to be favourable if these scars were in the frontal lobe, and least so if they were in the sensori-motor and parietal regions. Duration of the lesion did not appear to have any influence on the result. In a later series of patients (Penfield and Steelman, 1947) the results were rather better, 65 per cent of cases were cured or greatly improved by the operation. The best results were obtained in cases in which the lesion was attributable to birth injury. Recurrence of attacks in the immediate post-operative period usually meant an unsuccessful result and where they were of precisely similar pattern to the pre-operative attacks further operation was often carried out and the ultimate result was sometimes successful. A different pattern of attack indicates that neighbouring gyri have been affected by the trauma of the resection, perhaps as a result of oedema or anoxia. In Walker's series of cases of post-traumatic epilepsy (1949), after one year 19 patients had been free—or had had an aura or only one attack, out of 36. The results of operation for cranio-cerebral scars and other traumatic brain lesions have also been published by de Vries (1949). The post-operative E.E.G. is of considerable value in prognosis, for the persistence of spike discharge makes success unlikely and Penfield considers that in certain cases a further operation might be advisable for this reason alone.

Temporal Lobe Epilepsy

The treatment of seizures arising in the temporal lobe is assuming sufficient importance to warrant special comment. According to Bailey and Gibbs (1951) seizures of this type constitute one third of all cases of adult epilepsy. The characteristic patterns of these attacks and their association with lesions of the temporal lobe have been recognized since the writings of Hughlings Jackson and indeed no better description can be given than his of a doctor who suffered.
spaced over the field in order to obtain a rough indication of the whereabouts of the spike discharge. The electrodes are then concentrated in that area in order to obtain as accurate a localization as possible. If spontaneous spike discharge is absent, it may sometimes be induced by electrical stimulation of various points on the cortex for short periods of up to five seconds, repeated at intervals of a minute. The effect on the ECoG is carefully observed and the patient questioned as to any subjective phenomena and any muscular responses are noted. There is frequently a brief after discharge of spikes lasting a few seconds which may be considered physiological, but when the abnormal focus discharges this will be seen as a burst of spikes lasting many seconds up to several minutes.

If when a given point is stimulated there is after discharge from the focal electrode and the patient describes the aura of an attack, this area is to be regarded with fair certainty as the excitable focus. Walker found that in some 15 per cent of cases the after discharge occurred at a distance of up to 3 cm from the point of stimulation. In such situations it may be difficult to decide which portion of brain should be excised. Other anomalies and difficulties are encountered and in particular with regard to the extent of the proposed ablation and the importance of multiple electrical foci, some of these matters have been discussed by Jasper (1949) and Walker (1949). The extent of the resection depends on the nature of the lesion (if visible) and the position and the extent of the epileptic focus. It was the practice of Foerster to resect an extensive meningo-cerebral cicatrix down to and including the wall of the ventricle. Penfield and Walker doubt the necessity of doing this and believe it better to preserve the wall of the ventricle and thereby prevent blood and exudate from entering the ventricle where they may spread so as to give rise to an aseptic meningitis. In addition to any obvious lesion, the resection must include the epileptogenic focus as revealed by tests even though the brain appears superficially normal. In a so-called silent area, such removal may be generous—but where contiguous with eloquent areas, the ablation must be sufficient but sparing. In this case it is adequate to remove the whole width of the affected gyrus from the depth of one sulcus to that of its neighbour including the sub-cortical white matter. No cortex should be left demused of its pial covering for this carries its blood supply and this may be ensured by restricting the use of endothermy and by leaving a fringe of free pia overhanging the margin of the cavity. Small ablations can be effected by sub-pial suction. A further ECoG is now carried out to detect any residual or fresh abnormal foci which should be removed. Anti convulsant
by stimulation. Most surgeons perform a partial lobectomy because gyrectomy has proved to be inadequate. It should extend deeply to include the uncus and as far posteriorly as the test indicates but the extent must be governed by the need to avoid unnecessary risk to the integrity of speech and vision. A careful description of the anatomy of the temporal lobe in respect of this operation has been made by Penfield and Baldwin (1952) Guillaume, Mazars and Mazars (1953) do not perform a formal lobectomy, but conserve the central white matter of the lobe in order to diminish the risk and extent of hemianopia. By repeated cortical extirpations followed by I CoC examination, they extend the resection of grey matter until spikes are abolished, paying attention to the preservation of speech. In their series of 83 cases the middle or posterior part of the superficial temporal cortex was removed in 9, the lobe anterior to the vein of Labbe in 14, the same area with part or total cortexectomy of the insula in 24 and with part or total resection of the hippocampus in 14. Krayernbuhl, Hess and Weber (1953) did not find a strictly localized focus of abnormality in their cases but rather a widespread abnormality of the temporal lobe though maximal in the anterior part. The lesions which may be found are mostly those resulting from ischemia, and occasionally neoplasms. Earle, Baldwin and Penfield (1953) found that in two thirds of their cases birth injury of the brain might well have caused the lesion, a frequent finding was gliosis of the uncus and hippocampus and the nearby cortex such as would result from temporary herniation of the temporal lobe through the tentorial hiatus during birth.

The results of operation for temporal lobe epilepsy are perhaps slightly better than those for focal epilepsy elsewhere. Penfield and Flanagan found that of 51 patients who were under observation for periods of one to ten years after operation, 27 had experienced no attacks or only one or two and in a further 13 the attacks had been considerably lessened. Guillaume et al. (1953) report 70 per cent of 72 patients free from attacks during a follow up of from six months to fifty months. But Krayernbuhl et al. (1953) consider that recurrences are likely to occur with the lapse of time. The mortality of the operation is very low, there being only one death in Penfield's series of 75 operations and this has been the experience of other surgeons.

Hemispherectomy

Infantile hemiplegia may result from a variety of pathological conditions. In some instances the paralysis becomes manifest shortly after birth, sometimes it develops in a previously healthy
from them from the age of twenty until his death twenty three years later. The symptoms included dreamy states (intellectual aura), masticatory and tactual movements, feelings of dread and automatisms, post mortem examination revealed a patch of softening in the left uncinate gyrus. The dreamy state was elaborated by Gowers who called attention to other illusions of perception, and more recently Penfield's studies have made clear the diagnostic value of these abnormal states of consciousness. Memory of the event is lost, the patient is not responsive in a co operative manner and indeed may react violently to any forcible control. The automatism or mental confusion may have unfortunate medico legal consequences for as Hughlings Jackson said actions may occur of a kind which in a man fully himself would be criminal. Because of such behaviour these patients are frequently referred to mental hospitals for treatment (Laddell 1953). Radiography of the skull may be helpful because a birth injury which may affect the temporal lobe may also give rise to a smaller hemi cranium on that side and abnormalities in the air encephalogram are present on the side of the lesion in nearly half these cases (Penfield and Flanagan, 1930). Electroencephalography will differentiate the true temporal lobe seizure from petit mal and from lesions in the frontal lobe in which automatism may also occur. The recording of random spikes from either temporal lobe is the important abnormality, this may be bilateral but it is important to determine on which side they predominate. In 25 cases reported by Bailey and Gibbs (1951) an anterior temporal focus of spikes occurred unilaterally or predominantly so in 18 Interpretation of the EEG in cases of suspected temporal lobe epilepsy and of psychopathic disorders may be difficult. Strict assessment of the clinical picture is necessary because the behaviour disorders of psychopaths may be mistaken for the automatism of psychic motor epilepsy (Stafford Clark and Taylor 1949 Rey Pond and Evans 1949).

When the cortex is exposed by craniotomy electrocorticography is employed as in other forms of epilepsy and sometimes electrodes passed into or under the temporal pole may be necessary to identify a focus in a deep structure such as the hippocampus the focus is however, commonly in the anterior part of the lobe (Green Duusberg McGrath 1951). Cortical stimulation should be carried out if necessary to activate the ECoG, and to evoke the seizure aura. Although in the non epileptic brain the temporal lobe may be regarded as silent Penfield has shown that after the temporal cortex has been prepared by the conditioning influence of epileptic discharges, elaborate psychic processes may be activated.
to adjudge results. The 3 patients reported by Cairns had no fits during the year which had elapsed after operation. In McKissock’s series of 18 patients there have been no further fits in two thirds. Obrador (1914) reported 6 cases with 2 deaths; the results in the survivors were encouraging, but only 1 patient has been entirely free of fits.

An unexpected and astonishing effect in many cases has been the remarkable improvement in the mental state and in the behaviour of these patients. Such features as episodes of bad temper and asocial behaviour have improved and mental retardation has been relieved so that education became practicable and fruitful. The benefits in this sphere have been so convincing that hemispherectomy may be considered for these symptoms even in the absence of epilepsy. Another unexpected result of the operation has been to improve rather than to diminish the function of the hemiplegic limbs.

Although in a few cases there has been a transient post-operative increase of weakness, this phase has rapidly faded leaving the limbs with the same degree of limited voluntary control, but with a lessening or abolition of athetoid movement and in some with a sufficient lessening of spasticity as to make the limbs more useful. Welch and Penfield (1950) have noticed similar effects following the removal of atrophic sensorimotor cortex for focal epilepsy. But they point out that in the present state of our knowledge such an operation cannot be advocated for the relief of spasticity. In patients old enough for accurate sensory testing some relative impairment is usually found. After operation this may be further impaired, but in the final result appears to be but a relative loss. A contralateral homonymous hemianopia is the constant sequel of the operation but is of little disability. Speech disturbance after operation has not occurred in cases in which the hemiplegia developed before the acquisition of speech. In these patients presumably the healthy hemisphere becomes the site of the speech mechanism. Where the primary cerebral disease develops in the dominant hemisphere after the patient learns to speak it may be advisable to carry out preliminary testing of the situation of the speech centre by pneumonization of the appropriate area of the cortex.

From the detailed descriptions of the brain exposed by operation it is clear that frequently the abnormal tissue is limited to a part of the hemisphere and it may be asked whether such a drastically extensive resection is necessary. May not the healthy part be retained? Guided by his great experience of cortical ablation for focal epilepsy, Penfield (1952) considers that complete hemispherectomy is rarely necessary, provided that all ‘nocifarious’ cortex is
infant during an acute illness diagnosed as encephalitis or the
hemiplegia may have an abrupt onset similar to that of a vascular
lesion in adults. A proportion of these children subsequently
develop severe fits and often behave abnormally. In the course of
an exploratory craniotomy undertaken to excuse the epileptic focus
in such a patient, Krynauw in 1945 was led to remove the whole of
the diseased cortex of one cerebral hemisphere owing to the widely
spread abnormality shown in the EEG. The result of this radical
measure was so encouraging that further patients were similarly
treated and have been fully reported (1950). Focal and generalized
seizures petit mal and psychomotor equivalents were observed.
The abnormal mental states have included retardation, uneducable
and outbursts of temper (tantrums) in some cases so severe as to
necessitate admission to an institution. Radiological examina-
tion of the skull commonly reveals a smaller hemispherum on the
side of the diseased hemisphere and an encephalography demon-
strates the features of cerebral atrophy which may also be present
to a lesser degree on the unaffected side of the brain. Angiography
may show vascular occlusion to a varying degree. The EEG is
markedly abnormal on both sides but predominantly so over the
affected hemisphere.

The operation is carried out through a large lateral osteoplastic
craniotomy owing to the enlargement of the ventricle which
when opened allows the hemisphere to collapse. The operation of
hemispherectomy is not technically so difficult as it might appear
in contrast with hemispherectomy for tumour. Details of the
operation are to be found in Krynauw's article and in a report on
three patients by Cairns and Davidson (1951). Although called
hemispherectomy, the term is somewhat inaccurate as the basal
ganglia are preserved. Indeed it is of great importance that their
blood supply be not damaged. A wide variety of gross abnormality
of the brain has been encountered, diffuse atrophy and great
thinning of the cortex localized porencephaly microgyria super-
ficial atrophy and cysts underlying thickened opake arachnoid
McKusock (1953) has found the commonest abnormality to be
cystic degeneration around the Sylvian fissure bordered by convolu-
tions which are hard irregular and narrow. Such pathological
changes are the end results of processes which may be infective
traumatic or ischaemic.

The results of the published cases show remarkable success in
abolishing fits. All except 1 of the first 9 of Krynauw's series
had convulsive seizures. 1 died following the operation and the
others have had no recurrence of fits. His later cases are too recent.
CHAPTER XVII

INTRACRANIAL ANEURYSMS AND VASCULAR MALFORMATIONS

Aneurysms

The connection between spontaneous subarachnoid hemorrhage and cerebral aneurysms has become widely recognized since Symonds drew attention to it in 1924, but it is less well appreciated that aneurysmal rupture as a cause for hemorrhage should be considered in the older as well as in the younger patient. In their review of intracranial aneurysms McDonald and Korh (1939) found that more than half the patients were over forty years of age and in a series of 250 consecutive cases of death due to ruptured aneurysm, approximately half occurred between the ages of fifty and sixty-nine years (Dunning and Ulconer 1954). The ruptured aneurysm may inject its blood directly into the subarachnoid space, or if it be partly or fully embedded in brain the hemorrhage may in the first instance be entirely intracerebral, subsequently breaking through into the ventricle and thus reaching the subarachnoid pathway. This occurs in about half the cases of aneurysmal rupture and is very probable if the hemorrhage causes loss of consciousness. It is the rule for a hamartoma to rupture in this manner, particularly as it is commonly of wedge shape, its apex reaching to the ventricle. It is a much less frequent cause of bleeding than aneurysm. In a series of 57 autopsies Hyland (1950) reported that a ruptured aneurysm was found in 44, a hamartoma in 2 and no local cause in 9. A rather higher incidence was reported by Small, Holmes and Connolly (1953). The clinical manifestations of these lesions have recently been reviewed by Hamby (1952), MacKenzie (1953) and Meadows (1951) who also give extensive bibliographies.

The etiology and pathology of intracranial aneurysms have a bearing on their treatment. Myotic aneurysms which are most commonly caused by bacterial endocarditis do not call for surgery, although now that the use of antibiotics has greatly improved the prognosis of this disease, the evacuation of an intracerebral hematoma is occasionally necessary. Fusiform aneurysms are rare but may occur on the internal carotid and basilar arteries. They are atheromatous in origin, the vessel being diffusely affected, and it
removed. Krymsen found that the EEG was abnormal in areas of cortex far removed from the pathological area, and this induced him to remove the whole hemisphere and the abnormalities of the EEG of the other hemisphere often improved later. In his tenth case a partial operation was first performed, initial success was followed by a recurrence of seizures and hemispherectomy was then carried out but the late result is not yet known. Obrador also found that limited operation was disappointing. It is clear that further experience with much longer periods of post-operative observation will be necessary before this question can be answered.

Bibliography

BAILEY I and GIBBS I A 1931 J Amer Med Assn 145 360
CARRS H and DAVIDSON M A 1931 Lancet ii 411
EARLE K W BALDWIN V and PENFIELD W 1938 Arch Neural Psychiat 69 27
GLASERMAN V RANSOHOFF J POOL J L GRANDFEST H and METTLER F A 1962 J Neurosurg 9 461
GREEN J R DULISBERG R E H and MCGRATH W B 1941 EEG and Clin Neuropsych 3 232
GUILLAUME J NAZAR G and NAZAR A 1953 Rev Neurol 88 461
HILL D and PARR G Electroencephalography 1950 Macdonald London
JACKSON H Selected Writings pp 399 and 458 Ed Jas Taylor 1922 Hodder and Stoughton London
JASPER H H 1949 EEG and Clin Neuropsych Suppt 2 pp 16 and 100
JASPER H H and FLEMISH J Jbid p 123
JASPER H H and PENFIELD W 1943 Am J Psychiat 100 360
KRAYENBUEHL H HELM R and WENDT G 1953 Rev Neurol 88 564
KRESTJANSEN K quoted PENFIELD W 1931 11th Cong Neurol Internat 3 444 Mawson Paris
KREMAUER R 1950 J Neurol Neurosurg Psychiat 13 243
LIDDELL E G T and PHILLIPS C G 1949 Brain 73 123
LIDDELL E G T and PHILLIPS C G 1949 J Physiol 112 312
LIDDELL D W 1953 J Ment Sc 99 132
M ARSHALL C WALKER A E 1944 Bull J Hosp Hosp 85 344
MCKINZIE W 1953 Brain Roy Soc Med 46 451
MEYERS R KNOTT J R HAYNE R A and SWEENEY D B 1950 J Neurol Neurosurg 7 337
OBRADOR S 1953 J Neurol Neurosurg 10 52
PENFIELD W 1947 J Neurol Neurosurg Psychiat 15 33
PENFIELD W and BALDWIN V 1952 Ann Surg 136 825
PENFIELD W and FRICKSON T C Epilepsy and Cerebral Localization 1941 Balliere Tindall and Cox London
PENFIELD W and RASMUSSEN T Cerebral Cortex of Man 1949 Macmillan New York
PENFIELD W and STELLEMAN H 1947 Ann Surg 126 240
WALKER A E Post Traumatic Epilepsy 1940 Blackwell Oxford
WELCH R and PENFIELD W 1950 J Neurol Neurosurg 7 414
congenital malformations in these patients, in particular variations from the normal of the Circle of Willis, polycystic kidneys and coarctation of the aorta. Bremer (1943) and Padget (1944) offer a quite different explanation for the congenital origin of some cerebral aneurysms. They consider that these diverticula represent the remnants of transitory embryonic vessels which ordinarily become completely obliterated. Their arguments are very persuasive and offer a perhaps more cogent reason for the frequency with which aneurysms affect certain arterial sites. For instance that part of the internal carotid artery which ultimately becomes intracavernous is the point where the primitive trigeminal artery forms a link with the bilateral longitudinal neural arteries (later to become the basilar artery). This link occasionally persists in adult life as the carotid-basilar anastomosis, seen by Harrison and Juttrell (1973) three times in 582 cerebral angiograms and by Sunderland (1948) in three of 210 dissecting room specimens. The proximal part of the anterior cerebral artery, and the anterior communicating artery are also sites of recognizable and named embryonic branches which normally disappear. These are places where aneurysms are commonly found. The finding of bilateral symmetrically placed aneurysms those which are multilocular and those in infants is more easily explained on this basis (Bassett 1949). Turnbull found an aneurysm in an infant of one year and seven months who had died of broncho pneumonia.

An intracranial aneurysm may demand treatment because of the symptoms produced by pressure upon neighbouring structures, or in order to forestall its rupture. In the former group are those arising from the carotid artery within the cavernous sinus and those arising above the clival processes large enough to compress the optic pathways or the third nerve (Jefferson 1937 1938 1947). Intracavernous aneurysms rarely cause death by bleeding because they are well supported by the dura mater though they may rupture into the sinus and form a carotico cavernous fistula. I use form aneurysms rarely rupture and those of the basilar commonly cause death by reason of ponto medullary softening. The likelihood of eventual rupture in aneurysms other than intracavernous and fusiform is not known but it must be very high and has been estimated at 99 per cent probability. In Turnbull's necropsy material haemorrhage was present in two thirds. Jefferson (1947) records that of 158 patients with aneurysms approximately one half suffered from haemorrhage in 40 cases bleeding was associated with a third nerve palsy, in 32 cases there was bleeding with a local sign and in 45 the aneurysm was intracavernous.
Intracranial Aneurysms

becomes elongated convoluted and dilated. Treatment can only be
directed to diminishing the disturbing effect of the pulse wave
within the vessel as by proximal ligation. This has been done with
success in the case of the internal carotid artery by Hamby, but
Leg (1933) considers that carotid occlusion is undiagnosable because
the lumen of the atheromatous vessel is often narrowed by layers
of organized thrombus. He recommends the removal of the roof
of the optic foramen in order to relieve compression of the optic
nerve. Fusiform dilatation of the basilar artery is beyond the scope
of surgery. Saccular or berry aneurysms are the common variety
and comprise a lateral diverticulum of the parent artery, but in
some cases the sac comes to involve most of the circumference of
the main artery and even the nearby branches. Jefferson (1952)
has drawn attention to this aspect of their anatomy which it is
important to recognize, for the sac cannot be excluded from the
circulation by a clip or ligation applied to a non-existent 'neck.'
Saccular aneurysms have long been regarded as the result of con-
genital defects in the media (Turnbull, 1915; Forbus 1930) but
Glynn (1940) points out that cerebral aneurysms occur only in
0.5 per cent of necropsies although medial defects are so common
as to be found in 80 per cent of specimens of cerebral arteries
examined and Turnbull found saccular aneurysms of muscular
arteries in other parts of the body in only 0.1 per cent of necropsies.
Glynn also demonstrated by experiments on fresh cerebral arteries
that a congenital defect in the muscle if protected by healthy intact
elastica can withstand a pressure of 600 mm of mercury.
Carmichael's studies (1945, 1950) lead him to believe that for an
aneurysm to develop there must be not only a congenital medial
defect or hypoplasia of the muscle of a substantial size, but also a
breach of the elastica which is usually the result of atheroma. The
chance coincidence of both lesions the necessity for the breach to
be sufficiently large, and the probability that some small potentially
weak places derive protection from atheromatous thickening,
explain the discrepancy between the incidence of congenital medial
defects and that of aneurysms. Atheroma probably accounts for
the frequency with which rupture occurs in the older age groups.
The histological preparations of Carmichael are most instructive,
for they illustrate the thinness of the sac wall right up to its con-
fluence with the parent artery where an abrupt change occurs.
Although the point of rupture is commonly near the fundus the
surgeon has a particular interest in the structure and the fragility
of its neck. That the aetiology of saccular aneurysms includes a
congenital factor is also suggested by the greater incidence of other
should be carried out after an episode of bleeding. Experience has shown that the procedure does not precipitate or aggravate bleeding and work by Baker and Sweet (1932) has given an explanation for the injection into the carotid artery as performed in angioraphy does not raise the pressure within that artery. But angiography carries an extra risk in any patient who is suspected of having a bleeding aneurysm in the risk of performing this investigation outweighs any other.

Cerebral aneurysms may be treated by occlusion of a carotid artery or by a direct attack on the aneurysm. Either the internal or the common carotid arteries (or both) may be ligated and the internal carotid arteries may be occluded in the neck or within the cranium. Experience has shown that carotid ligation confers a considerable measure of protection against further rupture in many cases, but it may be followed by neurologic damage of varying degree and duration. This was shown by Scherfert (1940) to be due generally to anoxia of the brain and that carotid ligation carries a high mortality rate if performed for a recently ruptured aneurysm. Craniotomy and obliteration of the sac is being more frequently practiced in order to avoid these sequelae being more likely to give better results in the patient who has recently bled and because it offers a better chance of permanent cure. It appears the proper choice in cases of bilateral aneurysm.

In order to determine whether carotid ligation can be carried out with safety, many surgeons rely on Matas test. Dandy (1944) stated that in his hands compression of the internal carotid artery for ten minutes without symptoms had never failed to indicate correctly the safety of its ligation. This has not been the experience of all surgeons. Cerebral disturbances have occurred—perhaps the result of a carotid sinus reflex—when subsequently the patient has sustained carotid ligation without mishap. Conversely, the test has had no effect yet subsequent ligation has been followed by cerebral damage. Digital compression is maintained only with difficulty and as Sweet has shown the test can be easily and unwittingly performed inefficiently. A more certain method of applying this test is to expose the carotid and to compress it instrumentally. The surgeon may then proceed to ligation according to the results of the test. Electro-encephalographic abnormalities have been noted to follow the defective circulation consequent upon carotid ligation (Leager and Walsh 1940; Rogers 1944) but further experience has shown that this promising method is no more reliable than the
should be carried out after an episode of bleeding. Experience has shown that the procedure does not precipitate or aggravate bleeding and work by Bakay and Sweet (1952) has given an explanation for this. Injection into the carotid artery as performed in angiography does not raise the pressure within that artery. But angiography carries an extra risk in any patient who is supine, probably the added danger of increasing the cerebral anoxia. In practice, it is advisable to perform angiography as soon as possible in any patient suspected of having a leaking aneurysm or the risk of postponing the investigation outweighs any other.

Cerebral aneurysms may be treated by occlusion of a carotid artery or by a direct attack on the aneurysm. Either the internal or the common carotid artery (or both) may be ligated, and the internal carotid artery may be occluded in the neck or within the cranium. Experience has shown that carotid ligation confers a considerable measure of protection against further rupture in many cases, but it may be followed by neurological damage of varying degree and duration. This was shown by Schorstein (1940) to be due generally to anoxic lesions of the brain, and that carotid ligation carries a high mortality rate if performed for a recently ruptured aneurysm. Craniotomy and obliteration of the site is being more frequently practised in order to avoid these sequelae, as being more likely to give better results in the patient who has recently bled and because it offers a better chance of permanent cure. It appears the proper choice in cases of bilateral aneurysm.

In order to determine whether carotid ligation can be carried out with safety, many surgeons rely on Matas' test. Dandy (1914) stated that in his hands compression of the internal carotid artery for ten minutes without symptoms had never failed to indicate correctly the safety of its ligation. This has not been the experience of all surgeons. Cerebral disturbances have occurred—perhaps the result of a carotid sinus reflex—when subsequently the patient sustained carotid ligation without mishap conversely the test has had no effect yet subsequent ligation has been followed by cerebral damage. Digital compression is maintained only with difficulty and as Sweet has shown, the test can be easily and unwittingly performed inefficiently. A more certain method of applying this test is to expose the carotid and to compress it instrumentally. The surgeon may then proceed to ligation according to the results of the test. Electroencephalographic abnormalities have been noted to follow the defective circulation consequent upon carotid ligation (Yeager and Walsh 1940; Rogers 1944) but further experience has shown that this promising method is no more reliable than the
Matas' test Elvidge and Feindel (1950) report a case in which a post ligation hemiplegia was not predicted by the EEG and indeed a relatively normal EEG was recorded during the development of the hemiplegia.

In 1948 Sweet and Bennett reported the first of a series of important observations upon the changes in the blood pressure within the internal carotid artery in the neck brought about by its occlusion. They found that the intracarotid pressure was reduced on average to 50 per cent of its original value when the common and the external carotids were simultaneously occluded. If only the common carotid was occluded little if any flow occurred from the external carotid into the internal (as has commonly been held to be the case), and in fact a flow might equally well occur from the internal to the external. On these grounds and for other reasons they conclude that ligation of the internal carotid artery is less likely to give rise to complications than is that of the common carotid.

An important observation was that the pulse pressure was reduced to 25 per cent of its original value. Thus not only is the tension within the artery diminished but even more diminished is the force of the water hammer effect of the pulse wave. Occlusion of the internal jugular vein had no effect upon intracarotid pressure. Sweet and his co-workers have extended these observations (1950 1932 1953) of which the following is a summary.

The rapid injection of 10 ml of drograd or saline into the internal carotid artery causes no rise of pressure thus confirming experimentally the clinical evidence that angiography does not precipitate rupture of an aneurysm. The fall in pressure which follows carotid compression also occurs in its cerebral branches down to vessels of about 0.4 mm diameter and the percentage fall in these smaller vessels is of the same order as that in the internal carotid artery.

Although a reduction of pressure to 50 per cent of its original figure was an average finding in some cases the reduction was only to 70 per cent but in others it fell to as low as 30 per cent of its original figure. The value of bilateral cervical sympathetic block was equivocal because it was found that during the course of a thirty minute observation of carotid occlusion in other patients spontaneous fluctuations of pressure might occur in either direction these fluctuations of pressure provide further support for the view that delayed hemiparesis may be due to progressive anoxic changes rather than thrombosis. Cases have been reported however in which thrombosis has spread from the aneurysm into its parent vessel this might more readily occur if the flow of blood in the main stream were more sluggish. A few opportunities have
presented to measure the pressure distal to an occluded artery at intervals of from six days to two years after the operation. In some the reduction in pressure was nearly as great as at the time of occlusion. In 2 the pressure had risen nearly to normal some days after partial occlusion, when total closure of the vessel was not tolerated. Full closure was then carried out in these patients without sequelae. Measurements of pressure within the vertebral artery and inferior cerebellar artery have been made, and no decrease was registered when the vertebral artery was occluded. This gives no support for the treatment of aneurysms of the basilar artery and its branches by vertebral ligation. Pressure records have also been reported by Stroobos and Mount (1953), who emphasize the importance of maintaining the systemic blood pressure after carotid ligation, neurological sequelae occurred in 4 out of 14 cases of carotid ligation, and in 3 there was a marked fall in blood pressure. Woodhall et al. (1952) suggest that this technique of recording intracarotid pressures has a part to play in the treatment of drowsy or hemiparetic patients in which carotid ligation is proposed, a reduction of intracarotid pressure by not more than 50 per cent is considered safe, this pressure being obtained by adjusting the tightness of the ligature. Johnson (1952) has investigated the effects of carotid ligation by angiography. The common carotid artery was first tied and at a later date the internal. At the second operation angiograms demonstrated the aneurysm to be smaller by slowly injecting contrast medium into the common carotid artery it was possible to demonstrate that at the bifurcation the blood flow was from the external to the internal carotid artery. He concludes that after common carotid ligation the collaterals of the external carotid artery gradually enlarge, and recommends that as a first step the common carotid artery should be ligated, and some weeks later the internal carotid. Rogers (1949) considers that the figures derived from his own experience and that of other surgeons show conclusively that ligating the common carotid artery is relatively safe, and he believes that dividing the artery makes it safer but most surgeons prefer ligation in continuity so that the ligature can be removed if hemiplegia develops.

In reviewing the results of carotid ligation (1952) Jefferson said: A method of treatment stands or falls by its success or failure. Of 250 aneurysms, operation had been carried out in 177, and in 142 cases this comprised ligation of the common or internal arteries or both. Death occurred during the first six weeks in 12 and after a longer period in 8 more. In 8 it was the same aneurysm that bled, but in only 2 did this occur after the first month.
alive 122 cases, some many years old now, indicates to me that the
method is one that has to put it soberly, considerable merit
Johnson (1952) points out that in 29 cases the carotid was ligated
within a few hours of severe bleeding and it was in these that the
12 deaths occurred, it is possible that lethal damage had already
been inflicted by the bleeding. Hemiparesis occurred 11 times in
a series of 150 cases, and in 7 a permanent serious defect was left
(4.6 per cent). Norlen (1952), reporting on the results of 50 carotid
ligations found that a hemiparesis occurred in 9 of which were
transitory except 1. The ligation was removed in about half these
cases, and in 2 pariartial sympathectomy had been carried out
at the time of the ligation. Amongst 31 cases traced for periods
of up to fourteen years there were 6 who died of a fresh hemorrhage
in 2 the hemorrhage came from the same aneurysm, and in 2
probably so in the 5th it came from another aneurysm, and in
the 6th its origin is uncertain. Poppen (1950) considers that it is
safer to ligate the internal than the common carotid and has
experienced permanent partial hemiparesis in 4 patients out of
100 ligations of the carotid system. Kreyenbühl (1946) has given
the results of carotid ligation performed in 35 cases of
which 20 had bled. 6 patients died within two days of the operation
and all had been admitted in coma on account of severe fresh
bleeding. Amongst the survivors there had been no fresh bleeding
to date.

Obliteration of an aneurysm or its exclusion from the circulation
is being attempted with increasing frequency. Induced hypotension
as an alternative to reducing the pressure within the aneurysm by
temporarily obstructing the carotid artery has diminished the
technical difficulties which are encountered when an aneurysm
ruptures while it is being isolated. Without some such aid the
torrential flow of blood may prove too great to be removed
adequately by suction and with disastrous consequences. The
first attempt to make a direct attack upon a cerebral aneurysm
was made by Jefferson in 1937 although he states he failed to
accomplish anything. (1947) Dott introduced the method of
wrapping muscle around the aneurysm in 1933 and in 1937
McConnell reported that he had opened an aneurysm and packed
its cavity with muscle. In 1937 Dandy successfully applied a clip
across the neck of an aneurysm and later reported that he had been
able to do this on four occasions without a death. He also introduced
the method of trapping aneurysms arising from the internal carotid
artery by proximal and distal occlusion of the artery. These
constitute the basic methods of dealing directly with an aneurysmal
The application of a clip or a ligature to the neck of the aneurysm by a series of clips seems the most likely method to achieve cure and, as Olivercrona has pointed out, one reason for choosing the intracranial method is to attempt an immediate and a permanent cure. Difficulties may be encountered which may not be anticipated by a study of the aneurysm. A sac may have no neck and may incorporate vessels. The importance of which cannot always be assessed. This is particularly likely to be the case with aneurysms arising from the anterior cerebral and the anterior communicating arteries. The neck may be present but cannot be approached owing to the relationship to other structures or because it is overlaid by a large sac. The neck may be so fragile as to tear when a clip or ligature is applied. Occlusion of the neck necessarily leaves a small segment of the wall of the parent artery weak and we do not yet know whether this will be the site of a further aneurysm. Dissection of the sac may be difficult and fraught with danger on account of adhesions to important structures but if the neck can be isolated and occluded, the fundus of the sac—the usual site of rupture—often need not be disturbed. Where the sac cannot be dealt with by these methods then reinforcement by wrapping with muscle should be employed. The whole sac must be isolated so that the material can be packed around it on all sides. The writer (1952) has reported the use of wads of cotton wool soaked in thorium as a method of encouraging the formation of scar tissue which may well in time so stenose the sac as to obliterate it. He has also swathed the cotton wads or muscle strips around the parent artery thereby anchoring the aneurysm and perhaps preventing a bulge occurring at its site of origin. If time shows that it will prevent further bleeding, reinforcement seems to be the only method available for those sessile aneurysms which involve several important vessels.

In a paper which discusses the various problems in a very lucid and concise manner Norlin and Olivercrona (1951) present their experiences with intracranial operations for aneurysm. Seventy-eight craniotomies were carried out 15 during the acute stage with 8 deaths and 63 during the quiescent period with only 2 deaths. The use of clips rather than a ligature is favoured and only occasionally do they employ reinforcement. In only 3 patients did the operation give rise to any neurological deficits or aggravate pre-existing ones. Long term results are not yet available. Falconer (1951) reports 35 cases in which the aneurysm was subjected to an intracranial operation in 19 of which a carotid artery had previously been occluded in the neck. There were 5 deaths and residual
disability ascribable to the operation in 4. In 21 patients on whom
Mount (1951) performed a craniotomy for a bleeding aneurysm
there were 4 deaths, 3 of whom had been in coma. McConnell
Langan and Gleadhill (1952) report direct operations on 15
aneurysms without a fatality. Records do not yet give long term
results of these types of operations although Horrax (1941) stated
that he had wrapped an aneurysm with muscle in 6 patients and
all had survived for periods of up to six years.

In summarizing the surgical treatment of aneurysms it is neces-
sary to examine clearly the separate clinical problems which these
lesions present. Some derive from the anatomical site of the
aneurysm, some from its size and some from the complicating factor
of rupture. The development of spontaneous intracranial hemor-
rhage brings with it an entirely different set of problems consequent
upon the rapidly progressive brain lesion. The treatment of such
cases must be considered separately and will be discussed last. The
intracavernous carotid aneurysms form a well defined group in
which proximal ligation of a carotid artery in the neck has proved
by experience to be the best treatment for those cases which
have developed a fistulous communication with the cavernous sinus.
It may be necessary in addition to clip the internal carotid artery
within the cranium. Hamby describes an ingenious method first
practised by Noland and Taylor by which a portion of muscle is
introduced into the internal carotid artery in the neck to form a
muscle embolus thereby plugging the fistula. The next group
consists of supraclinoid aneurysms in which operation is indicated
because of pressure upon neighbouring structures or because of
pain due to stretching of the sac suggesting imminent rupture. In
this group may also be included those cases in which the aneurysm
has ruptured some time previously and from the effects of which
the patient has made a complete recovery. In these operation is
imperative because there is some evidence that a further rupture
is more likely to prove fatal. Choice of operation may be made
easy by reason of the large size of the aneurysm which precludes
any method except carotid ligation. A large body of opinion holds
that regardless of size carotid ligation is the method of choice for all
except those arising from the anterior communicating artery or
from vessels above the Circle of Willis. Although the reduction of
pressure within the carotid holds good for certain vessels above the
Circle of Willis it is not clear yet whether a similar reduction of
pressure occurs in the anterior communicating artery by analogy
from the observation that pressure in the basilar system is not
lowered when the vertebral artery is occluded it is likely that
anurysms of the anterior communicating and anterior cerebral arteries will not be adequately affected unless the communicating vessel is very small or both anterior cerebral arteries are derived from the homolateral carotid. In such the risk of neurological deficit is high though it might be diminished by carotid occlusion in stages. An increasing number of surgeons find that with experience many supracheloid anurysms can be dealt with by a local intracranial procedure with a fairly low mortality and morbidity rate and they believe that such operations confer a greater insurance against subsequent rupture than carotid ligation and with less risk of post-operative sequelae.

There remain those cases of recent anurysmal rupture presenting with spontaneous intracranial haemorrhage. This group is probably the largest and presents problems of treatment different from and far more difficult than any other. This is not always recognized in the literature as the results of various procedures are assessed irrespective of the stage of the anurysm in relation to leakage. This greatly confuses the issue and could be compared to an attempt to evaluate different methods of treating, for instance intracystic hernia irrespective of whether the hernia was strangulated or free (Norden and Olveerona 1953). In the acute stage of haemorrhage the patient suffers immediately from the irritative effect of blood in the cerebrospinal fluid pathways from the neurological lesions produced by the irruption of the blood into the brain tissue—perhaps impairing the integrity of the vital vegetative centres, subsequently there develop oedema and softening of brain consequent upon these traumata and upon disturbances of blood supply by occlusion of small vessels by thrombosis and possibly by widespread spasm of the carotid tree. In addition brain function may be progressively impaired by an intracerebral or subdural haematoma. The general conduct of the case is similar to that of a severe accidental brain injury—nursing care attention to shock avoidance of respiratory obstruction and infection and adjustment of nutrition electrolyte and water needs. Surgical treatment will be necessary for the evacuation of a haematoma and the frequency of this complication should be more widely recognized outside the neurosurgical centres where necessary radiological methods should be employed for diagnosis. The treatment of active haemorrhage is probably never practicable for if bleeding is too violent to cease (at least temporarily) by natural processes, lethal damage is rapid. Olveerona and Norden consider that as a rule it is useless to operate unless the patient survives the first two days. Their figures reveal that the mortality of operations upon patients within the first three
weeks of rupture was approximately 50 per cent, which is similar to that commonly reported for bleeding aneurysms running a natural course. In their opinion operation during this period is hazardous because vasospasm may persist for that length of time. But against so much delay must be set the observations of Ask Upmark and Ingvar that death may occur in the first twenty-four hours or not until the twenty-fifth day, but on an average at about the ninth day, thus delay beyond the first few days may avoid operation or patients with lethal injuries and delay for several weeks may mean a low operative mortality yet more patients may die who would be saved by operation, and in particular those with a haematoma. The problem of treatment has been clearly seen and presented by Small Holmes and Connolly (1953) who compare and contrast the results of conservative treatment in 100 consecutive patients with those of surgical treatment in 50. There were 43 deaths in the first group (43 per cent) and 6 in the second (12 per cent). In the latter there was a higher proportion of angiomatic malformations in which haemorrhage carries a lower death rate than does aneurysm. In the conservatively treated cases one third (14) of the deaths occurred within the first twenty-four hours only 8 in the next seven days, and one third (15) in the following week. Intracerebral haematomas were found with a similar frequency in each group in about one third of the cases. All those patients in whom a clot was evacuated recovered. Magee's figures (1943) also suggest that there is a delayed peak in the incidence of death at about the third or fourth week, and cerebral compression by haematoma and oedema may well partly account for the delayed deaths. If this be so the elective time for operation is probably towards the end of the first week. Cranotomy—preceded by angiography and if necessary by ventriculography—is the method of choice so that clot can be evacuated and a decompression provided, a direct attack being made on the aneurysm at the same time. Some surgeons prefer to ligate the carotid in the neck rather than disturb the aneurysm but the published figures indicate that carotid ligation alone is more likely to do harm than good presumably because dropping the blood pressure within vessels supplying tissue already damaged by trauma and by compression must aggravate anoxia. For a similar reason the use of hypotensive drugs during operations on these patients carries a greater risk and the writer considers that the systolic pressure should never be allowed to drop below 80 mm and only for the brief period necessary to deal with the aneurysm the pressure thereafter being immediately restored by posture and by pressor substances.
ANGIOMATOUS MALFORMATIONS

Congenital vascular malformations of hamartomas are to be distinguished from the true blood vessel supplying the capillary hemangioendothelioma. There are three main groups of which the most common are arteriovenous malformations are the most common. These are usually found in the brain, and are usually situated in the brain stem, where it may be a cause of death by intracranial pressure, or may cause death by impotence. It may be associated with hemorrhages in the cerebral cortex and may be familial. The cerebral aneurysms are also rare, they may be multiple and subcortical or basal in situation and may be accompanied by similar lesions in other organs. They may give rise to spontaneous intracerebral hemorrhage and suffer destruction in the process. In this and the next paragraphs, which could account for the proportion of cases of spontaneous intracerebral hemorrhage for which no cause can be found (Mergolsh et al. 1969). Bowersley 1962). They have been found as the cause of focal epilepsy (Penfield and Warden 1948).

Vascular malformations were at one time regarded as rare lesions and of academic interest only. But a fuller knowledge of their natural history and the increased use of angiography have shown that they are important and not infrequent lesions which may lead to severe disability and death by hemorrhage in many cases. Their surgical removal is a feasible proposition. In Olivecrona's Clinic there were only 18 cases in the period 1921-1935, 42 cases in the period 1936-1946 and 36 from 1947 to 1950 (Olivecrona 1950).

Hemorrhage occurred in about half of these patients, often causing gross disturbances such as hemiplegia and dysphasia though recovery took place to some degree. Olivecrona points out that the ultimate outlook in many of these patients is poor. Mackenzie (1930) has recently reported on a series of cases. The first symptom occurred during the second decade in one half and had declined itself by the age of thirty in approximately three quarters. The first symptom was epilepsy in 32 per cent. Hemorrhage (presumptive in some instances) in 30 per cent, and headache in 24 per cent of cases. In approximately half it was thought that an episode of bleeding had taken place and a cranial bruit was present in one half. Hemiparesis and other neurological deficits which were present in 34 of his 50 patients may not always be due to hemorrhage for the development may be gradual and progressive and is then due to the short circuiting of the blood through the malformation depriving the surrounding brain of its nutrition.

Angiographic studies of arteriovenous hamartomas have revealed...
that they may occasionally be multiple in the same or different hemispheres, bilateral, and may occur in association with saccular aneurysms of arteries (Moniz and Guerra, 1953) and of veins (Russell and Nevin 1940). They occur most frequently in the territory of the middle cerebral artery. It is usually possible to identify one or more enlarged arteries feeding the abnormality, and it may receive blood from more than one of the major groups of cerebral arteries and from both sides. The defective supply to the neighboring brain may also be seen. Angiography carried out at an interval after the operative removal of the hamartoma will demonstrate that the abnormal distribution of blood has been remedied (Norlén 1949). Measurements of the cerebral blood flow in these patients have demonstrated a threefold increase in large lesions and it has been estimated that upwards of 1800 ml of blood per minute may pass through the shunt (Shenkm et al. 1948). This leads to an increased cardiac output, enlargement of the heart and a low diastolic pressure. Repeated angiographic examinations may be necessary by the ordinary methods before successful visualization is achieved and Curtis (1949) and Schurr and Wielbom (1952) using a rapid serial film technique have demonstrated that the inability to reveal a hamartoma by the normal three film method does not necessarily exclude its presence because of the speed of the blood flow through the lesion. The opaque medium usually recedes from the hamartoma unduly rapidly in contrast to the delayed emptying of the pathological vessels of a malignant glioma (Wickbom 1948). Because of the risk that the contrast in the lesion may not be caught by the three film method Moniz and Guerra draw attention to certain significant appearances: a deeply seated lesion should be suspected when deep veins are filled sufficiently early to be seen with the arteries filling of the sagittal sinus in this phase also suggests an abnormal short circuiting of arterial blood.

The forbidding appearances of an angiomaticous malformation have led surgeons to assume that it was inoperable. Attempts to coagulate the vessels usually provoke their rupture though Trupp and Sachs (1948) claim some success with this method. Clips placed upon the main feeding vessels are alone rarely successful, and it is usually not possible to apply them without a deep dissection. In an incomplete removal the lesion is liable to give further trouble. The writer has had a case in which post operative angiograms revealed that a small area of predominantly arterial vessels had escaped removal, and the patient subsequently sustained a rapidly fatal haemorrhage. Decompression and deep x-irradiation have
TREATMENT

The given reference text is not clearly visible or legible in the image. It seems to be discussing the treatment of a medical condition, possibly hemorrhage, and includes a section on the surgical removal of lesions, with references to previous studies and authors. The visible text is cut off, and the full content is not legible enough to transcribe accurately.

References

BANAY L and SWIFT W H. "1993 J Neurosurg 10 35."
BANSETT R C. "1944 J Neurosurg 6 216."
BRISTER J J. "1945 Acta Orth 35 619."
CARMICHAEL R. "1944 J Path Bact 57 316."
CARMICHAEL R. "1950 J Path Bact 62 1."
CURTIS J B. "1944 J Neurol Neurosurg Psychiat 12 167."
DANDY W J in Intracranial Aneurysms. 1944. Ilana NY Comstock.
DIXON T A B and LACONEFR M A. "1933 Lancet 1 799."
DOTT N M. "1932 Trans Med Chir Soc 1 Ironhurgh 47 219."
FLOYD A R and KINDEI W H. "1950 J Neurosurg 7 19."
FALCOER V A. "1944 J Neurol Neurosurg Psychiat 14 193."
FORBUS W D. "1933 Bull Johns Hopkins Hosp 47 239."
GLYNN L L. "1940 J Path Bact 51 213."
HARRISON C R and LUTTRELL G. "1953 J Neurosurg 10 20."
HYLAND H H. "1950 Arch Neurol Psychiat 63 61."
that they may occasionally be multiple in the same or different hemispheres bilateral, and may occur in association with sacular aneurysms of arteries (Moniz and Guerra 1953) and of veins (Russell and Nevin 1940) They occur most frequently in the territory of the middle cerebral artery. It is usually possible to identify one or more enlarged arteries feeding the abnormality, and it may receive blood from more than one of the major groups of cerebral arteries and from both sides. The defective supply to the neighboring brain may also be seen. Angiography carried out at an interval after the operative removal of the hamartoma will demonstrate that the abnormal distribution of blood has been remedied (Norkin, 1949) Measurements of the cerebral blood flow in these patients have demonstrated a threefold increase in large lesions and it has been estimated that upwards of 1800 ml of blood per minute may pass through the shunt (Shenkin et al., 1948) This leads to an increased cardiac output, enlargement of the heart, and a low diastolic pressure. Repeated angiographic examinations may be necessary by the ordinary methods before successful visualization is achieved and Curtis (1949) and Schurr and Wickbom (1952) using a rapid serial film technique have demonstrated that the inability to reveal a hamartoma by the normal three film method does not necessarily exclude its presence because of the speed of the blood flow through the lesion. The opaque medium usually recedes from the hamartoma unduly rapidly in contrast to the delayed emptying of the pathological vessels of a malignant glioma (Wickbom 1948) Because of the risk that the contrast in the lesion may not be caught by the three film method Moniz and Guerra draw attention to certain significant appearances a deeply seated lesion should be suspected when deep veins are filled sufficiently early to be seen with the arteries filling of the sagittal sinus in this phase also suggests an abnormal short circuiting of arterial blood.

The forbidding appearances of an angiomaticous malformation have led surgeons to assume that it was inoperable. Attempts to coagulate the vessels usually provoke their rupture though Trupp and Sachs (1948) claim some success with this method. Clips placed upon the main feeding vessels are alone rarely successful and it is usually not possible to apply them without a deep dissection. Like an incomplete removal the lesion is liable to give further trouble. The writer has had a case in which postoperative angiograms revealed that a small area of predominantly arterial vessels had escaped removal and the patient subsequently sustained a rapidly fatal hemorrhage. Decompression and deep X irradiation have
rarely given proof of much value. Carotid ligation is liable to be followed by hemorrhage more frequently than when performed for a saccular aneurysm. In 6 patients in which carotid ligation was performed Olivcrona reported that hemorrhage resulted in 4, being permanent in 2. He considers this a dangerous procedure because the short circuiting of blood through the hematoma renders that hemisphere more liable to anoxemia when it is denied its expected supply of blood.

Kutscher and Wassermann (1943) carried out carotid ligation in 23 patients out of a total of 78. There were no ill effects in 18. In 14 patients in which there had been bleeding, carotid ligation was unsuccessful in preventing further hemorrhage in 3. There were 2 deaths: 1 early and 1 late. Of the 21 survivors 13 were fully at work 4 in part-time employment and 4 totally disabled.

The greatest experience of the surgical removal of these lesions has been that of Olivcrona. In his earlier cases extirpation was carried out in only about one quarter, but latterly this proportion has risen to two thirds. Out of a total of 96 cases the lesion was completely removed in 60, with 7 deaths; of the survivors 37 are well and able to work; 6 are total invalids but their disabilities were present before operation. Epilepsy was greatly relieved in many of the cases, particularly in the younger patients. The operation has been rendered less hazardous by the discriminative use of induced hypotension, but nevertheless an ample supply of blood for transfusion should be at hand. The technique of removal may be found in the paper by Olivcrona and Ruys (1945).

References

Ask Ufermark I and Innvar D 1930 Act Med Scand 138 1 15
Bakay J and Swift W H 1932 Surg Gyn Obst 95 67
Bakay J and Swift W H 1933 J Neurosurg 10 3 3
Bassett R C 1940 J Neurosurg 6 210
Bretzer J 1 1940 Arch Path 35 181
Carmichael R 1943 J Lab Bact 57 340
Carmichael R 1950 J Lab Bact 62 1
Curtis J B 1945 J Neurol Neurosurg Psychiatr 12 107
Dandy W 1933 In Intracranial Aneurysms 1944 Ithaca, N.Y. Comstock
Dinnes T A R and Falcohter M A 1943 Lancet ii 799
Dott N M 1933 Trans Med Chir Soc Edinburgh 47 210
Evans A T and Freund W H 1940 J Neurosurg 7 13
Falcohter M A 1951 J Neurol Neurosurg Psychiatr 14 163
Forbus W D 1939 Bull Johns Hopkins Hosp 47, 239
Glynn L E 1940 J Path Bact 51 213
Hambly W B in Intracranial Aneurysms 1952 Thomas Springfield, Illinois
Harrison C R and Lutterell C 1953 J Neurosurg 10 20-
Hornox C 1941 Ann Surg 114 339
II H H 1940 Arch Neurol Psychiatr 63, 61
REFERENCES

JEFFERSON G 1937 Brain 60 441
JEFFERSON G 1938 Brit J Surg 26 207
JEPPFRSON C 1947 Proc Roy Soc Med 40 419
JEFFERSON G 1952 Proc Roy Soc Med 45 300
JEWESBURY 1947 Brain 70 274
JOHNSON R 1952 J Am Med Ass 114 162
KRAYENBUHL H 1946 Schult. Med Nach , 76 908
KRAYENBUHL H and YASARGIL M 1953 1th Int Neur Congres
Lisboa 39
LEY A 1953 J Neurol Neurosurg Psychiatr 13 75
McCONNELL A A 1937 Zentralbl f Neurochir 2 269
McCONNELL A A LANIGAN J P and GLEADHILL C A 1942 Irish J
Med Sci 290
McDONALD C A and KORB M 1939 Arch Neurol Psychiatr 42 298
MACKENZIE J 1943 Brain 76 184
MAGEE C G 1943 Lancet ii 497
MAPOGILS G ODOM G L WOODHALL B and BROO B M 1951 J
Neur Neurosurg Psychiatr 8 564
MEADOWS S P in Modern Trends in Neurology 1951 Butterworth
London
MONIZ E and GLIREELO M 1953 1th Int Neur Congres Lisboa 79
MOUNT L A 1951 J Am Med Ass 146 093
NORLEN G 1949 J Neurol Neurosurg 5 143
NORLEN G and OLIVECRENA H 1953 J Neurol Neurosurg 10 404
NORTHEFIELD D W C 1952 Proc Roy Soc Med 45 302
OLIVECRENA H 1953 1th Int Neur Congres Lisboa 149
OLIVECRENA H and RIVES J 1948 Arch Neurol Psychiatr 59 567
PADGET D H in Intracranial Aneurysms 1944 Dandy W E Ithaca
NY)
INDEX

Dimethyl tubocurarine bromide 76
Diverticula of stomach 29
Diverticulitis and diverticulitis of intestine 204 216
Drugs in intestinal obstruction 71
Dumpling syndrome 119
Duodenal ulcer 113 112
causative factors 71
chm of treatment for 109
surgical treatment 111
variations for 110
Duodeno-jejunosal flexure ulcers 112
Duodenum diverticula of 20
Dyskinetic following ileoileostomy 131

Electro-corticogram (1 1 c) in
epilepsy 44 44
in temporal lobe epilepsy 42
Electroencephalogram (1 1 c) in
epilepsy 447
Electrolyte and water in tubular 1
Emphysema 19
chronic 24
tuberculosis 21
Endarterectomy. desilative 72
Endocrine glands 74
Enteralis regional 171
tuberculosis and Crohn's disease 171
Epilepsy after cerebral surgery 472
431 437 438 442
lent photoresection in 43
localization of foci 446
operative technique 445 446
results of 431
temporal lobe 431
Epipharynx tumours of 63
Epithelioma treatment of 407
Ewing's tumour 398 400 401
Extracorporeal circulation 267

Fallot's tetralogy 26
cardiac catheterization in 29
Feline's syndrome 133
Femoral vein ligation 330
Fey's approach in kidney operation 29
Flaxseed 33
Fluid therapy in burns 32
Freeze drying of arterial grafts 317

Gallamine triethiodide (1-flaxodil) 33
Gall bladder and bile ducts 129

Gamma radiation therapy in cancer treatment 76
Canglon blocking agents in
prostatism 41 47
Canglonectomy and prostatic necrosis 71
Canglon conservative amputations 71
Canglonectomy partial for duodenal ulcer 109
Canglonectomy total for ulcer 109
technique of in hiatal hernia in 107
venous varicose and gastroenteritis in treatment of
duodenal ulcer 109

Physical 102
radical measure of Barck 102
sequels of 117 112
Gastric ulcer bleeding 111
causative factors 79
surgical treatment 91
Gastro-enterostomy and vagotomy for duodenal ulcer 108
compared with partial gastrectomy 109

Gastro-esphageostomy 92
Gastroesophageal reflux 44
Gelger-Müller test 420
Genetic influences in breast cancer 310
Genito urinary surgery survey of
{Aymans 26
Genito nodular cancer in 76
femoral 302
Gold radioactive 42
Grafts artery 310
in intrathoracic aortas 29
preservation of 310
myocardial 284
Grafting vein 28
Graves' disease 302
Gum acacia as plasma substitute 11

Hemolytic in hyperplasia 11
Hemorrhage spontaneous intra-
annual 457 461
Half life of isotopes 420
Hamartoma 469
rupture of 457
Heart approach to for operation 252
catheterization of 254
compression of 279
disease acquired 279
gonadal 260
effect of hypotensive anaesthesia on 45
Blood flow studies after artery grafting 321
Blood pressure records after carotid ligation 402
Blood vessels great manipulation of 283
transposition of 263
peripheral 316
Bone sarcoma 397-405
Brain tumours localization by 31P 423
Breast carcinoma of 340
hormonal treatment of 348-353
surgical treatment of 345-348
transmissible factor in 342
Brodmann cytoarchitectonic map of brain 484
Bronchial carcinoma 235
Bronchiectasis 224
Bronchograms 226
Budd Chiari syndrome 156
Burns classification 50
 treatment 53-61
Cæcum diverticulosis and diverticulitis of 215
Cancer hormonal control of 410
Cardia carcinoma at palliative operation 84
 radical operation 81
 mechanism and function of 91
Cardiac catheterization 254
 compression 270
 See also Heart
Cardiospasm 78
Carotid artery ligation for cerebral aneurysms 461
Catabolic phase of nutrition post traumatic 1
Cattell's manoeuvre in bile duct repair 135
Cerebral blood flow effect of hypotensive anaesthesia on 46
Cerebral cortex ablation operations 433
 stimulation of 448-450
 undercutting operation 437
Cerebral surgery in mental illness 427
 review of 438
Cervical lymph nodes enlarged treatment of 395
Chemotherapeutic agents 14
Chemotherapy susceptibility of common infections to 28
Chloramphenicol 26
Cholangiography 129 130
transhepatic percutaneous 141
Cholecystectomy dyskinesia following 131
residual disease and structural change after 129
Conglutate gyrus removal of 430
Circulation extracorporeal 257
 studies with 14Na 424
Cirdoid aneurysm 332
Claudication intermittent See under Intermittent
Coarctation of the aorta 267
Cobalt radioactive 384
Colectomy in ulcerative colitis 182
Colitis ulcerative 178
 and Crohn's disease 175
 medical treatment 179
 predisposition to cancer 179
 right sided 180
 surgical treatment 181-184
 vagotomy in treatment of 179
Collapse therapy in pulmonary tuberculosis 228
Colon 178
 carcinomas of obstruction due to 187
 diverticulitis of 210-214
 diverticulosis of 208
 left cancer of 184
Colostomy wet 414
Colt's wires 287-289
Columbus Greystones Associates work of 434 435
Coronary artery disease 284
 sinus occlusion 285
 vein arterialization of (Beck's operation) 286
 operations 285
Cortisone and ACTH in treatment of ulcerative colitis 179
Crohn's disease 171
 clinical features and diagnosis 172-174
 familial factor 174
 kinship with ulcerative colitis and tuberculosis 175
 treatment 175
Cruveilhier Baumgarten syndrome 108
Curare synthetic substitutes for in anaesthesia 30
Cushing's syndrome 376
Decamethonium iodide 34
Decortication of lung for chronic empyema 223
Dextran as plasma substitute 12
Diaphragmatic hernia 90
Dihydrostreptomycin 25
Di lodo thiouracil (Itrumil) 364
Lymph nodes surgical role in treatment of li

Lung atelectasis treatment 171

Lythrel 242

Malignant disease treatment of principles of 357

Mean clinical value in lymphoma treatment of bone marrow 268

Megadixion again from 181

Mega esophagus 50

Melaoma malignant treatment 408

Mentatilness cerebral surgery in 4th review of 378

Mercaptoimidazole (Neo Mercapto) 24

Mesenteric vein superior anoma to or with inferior vena cava in portal hyperten 176

Metabolic complications of acute my 470

Metabolism general post traumatic of burn 8 of 1

Metaphonium compounds the effects of 46

Milk factor in breast cancer 742

Mitral regurgitation 82

Mitral stenosis 24

Mouth cancer of treatment of 399

Myasthenia gravis thymectomy for 324

Mycotic aneurysm 373

Myelobrosis 124

Myeloma multiple 398 400 403

Myelosclerosis 354

Myocardial grafting 281

Ischemia 284

Myoneurectomy in intermittent claudication 398

Neostigmin in myasthenia gravis 324

Nepticulectomy partial 300

Neuritis treatment 173

Nutritional defects general after surgery 116

Obstruction of colon by 14

Obstructive jaundice 14

Odor and perforated diverticula of colon 211

Oesophageal varices prevention on

Oesophagitis hiatal 211

Oesophagus jejunostomy 87

Oesophagoplasty extra mediasinal

Oesophagus cancer male of 80 as early sign in 1 enlargement atresia 33

Oesophagus 80

Oesophageal ulcer of 10

Oestrogen therapy in cancer of 376

of prostate 711

Oophorectomy bilateral 111 treat cancer 411

Orchidectomy subcapsular bilateral for prostate cancer 711 411

Osteoscleroma 715 400 401 40

Osteogenic sarcoma 708 40

Pancreas cancer of 17 141

Pellet therapy for 143

Pancreatitis relapsing chronic 141

Pancreas thirotropin hormone 11 1

Parathyroids 172

PAS 17 26

Patient ductus arteriosus 250

Cardiac catheterization 250

Pelvic visceraleroscopy indications for 41

operative detail 414 417

Penicillin 18 1

Penicillin resistant bacteria 24

Penis epithelium of 407

Peptic ulcer bleeding 112 117

of oesophagus 96

perforated 110

surgical treatment of 99

Pericarditis 271

Pericarditis constrictive 271

Peritoneoscopy in portal hypertension 109

Peritonitis in perforated diverticulum of colon 211

Personality changes after leucotomy 428

Phaeochromocytoma 380
Heart failure congestive ligation of inferior vena cava in 287
interatrial defects 283
interventricular defects 284
manipulation of 251
sabot shaped 262 264
stone 1 272
surgery of hemorrhage in 251
scope of 260
wounds of repair of 252
Heart lung artificial 257
Hemi pyloromyotomy with vagotomy for duodenal ulcer 108
Hemispherectomy 4.3
Heparin 321 322
Heparinzation regional 326
Hepatic artery ligation in portal hypertension 168
Herma diaphragmatic 90
hiatus 90
Hiatus hernia 92
Hiatus oesophageal mechanism at 90
Hibernation 48
Hirschspring’s disease 189
Hodgkin’s disease 154
Hormonal control of cancer 410
influence of breast cancer 341
treatment of carcinoma of breast 348-353
Hydronephrosis, operations for 296
Hyperinsulinism and hypoglycemia 143
Hyperparathyroidism 372
Hypersplenism 151
primary 154
Hyperthyroidism radio iodine in 362
surgery in 362
thyroidectomy 364
Hyponatremia and hyperinsulinism 143
Hypopharynx tumours of 64
Hypotensive anaesthesia 40-48
state consideration of 44
Hypothermia 259
Ileal suction drainage 184 189
Ileostomy for ulcerative colitis 182
Intermittent claudication management of by artery grafting 318
other methods 327-329
Intestine diverticulosis and diverticulitis 204 216
Iodine radioactive 422
Ischaemia of limbs artery grafting for 318
Islet cell tumours of pancreas 143
isoniazid, 17 26

Isotopes, radioactive 334
as measuring device 421
as tracers 420
in therapy 421
physical principles 419
precautions in use of 421
Jaundice obstructive diagnosis of 141
Jejunum diverticula of 208
Kidneys effect of hypotensive anaesthesia on 45
operations on position and approaches 255
Koenig Rutzen ileostomy set 183
Lang Stevenson clamps 100 101
Laryngopharyngectomy 70
Laryngo pharynx tumours of 62 64
Larynx cancer of treatment of 395-397
Landolsson 33
Leucite tube for arte y bridge 333
Leucotomy motion in variability of 430
Intra results of 429
metabolic complications following 430
open 431
partial 433
personality changes after 428
post mortem findings 429
post operative capacity of patient tests of 447
rostral 432
transorbital 432
Leukæmia acute following treatment of polycythaemia 434
Leukopenia and splenectomy 153
Liver biopsy in portal hypertension 163
disease and portal hypertension 157
effect of hypotensive anaesthesia on 45
function tests in portal hypertension 160
Lobectomy in bronchiectasis 224
in lung cancer 243
Lung carcinoma arthropathy in 239
diagnosis 240
sclerotic involvement 238
incidence and mortality 237
sites of growth and symptoms 236
INDEX

Acute abdomen 72
Adhesions 124
Amputation 316
eral 211
Sympathetic block 1 in 3.1
total by local anaesthetics 42
Tamponade acute 279
subacute 271
Telecobalt 326 7.04
Teleradium 358 304
in cancer of larynx 327
Tentotomy of the Tendo A hilles in intermittent claudication 328
Teratoma of testis 386
Terramycin 26
Testis tumours of radiotherapy in 366
Thio semicarbazone 17
Thiourea in hyperthyroidism 304
Thoracic surgery, 217
anesthesia in 218
physiotherapy in 218
posture in 218
Thoracoctomy for pulmonary tuberculosis 228
Thoracoctomy for empyema 223
right in carcinoma of oesophagus 85
Thrombosis para a 1.31 3.31
Thymectomy 1 1 II 1
Thymoma 1
Thymus gland 1
Thyroid 4.1 4.2
hypophysis 1 in 4.1
hypophysitis 1 in 4.1
Thyroidectomy 1
Tongue 291 treatment of 291
Tonsillectomy 411 4
Trachea 291 3 in 291 treatment of 291
Transmissible factor in treatment of 311
Truncus arteriosus 297
Trypsin 297
in treatment of empyema 297
Tuberculosis 297
Tuberculoa 1 in 297 treatment of 10
2
pulmonary collapse therapy in 297
lung resection in 231
Tuberculous empyema 297
of Tubocurarine chloride 31
Ulcer gravitational 236
peptic of oesophagus 96
surgical treatment 96
radicot 406
Ulcereative colitis See under Colitis
Urethral stricture 314
Urinary bladder carcinoma of radiotherapy in 324
Urinary retention of complicating prostatic enlargement 311
Vagotomy and gastroenterostomy versus partial gastrectomy in treatment of duodenal ulcer 109 combined with other surgical procedures 108 for duodenal ulcer results and sequelae 109 for secondary (stomal) ulceration 110 in treatment of ulcerative colitis 179
Van de Graaff generator 389
Varices oesophageal operations on 167
Varicose veins injection treatment of 338
Pharynx and larynx excision of 70
cancer of 62
radiotherapy in 66
surgery in 66 67
reconstruction of 70-73
Phenol sympathetic block 329
Phlebography 334
Phosphorus radioactive 423
"Physiological gastrectomy, 102
Physiotherapy in thoracic surgery 218
Plasma substitutes 10
Plastics in peripheral vascular
surgery 332 333
Plethysmography clinical 328
Pleural abscess localized 220
infection 219
 treatment 220-224
Pleurectomy for empyema 223
Pleurisy suppurative diffuse 220
Pleurograms 222 223
Pneumonectomy in lung cancer 243
Pneumothorax extrapleural 231
Polycythemia * P in treatment of 424
Polymyxin 28
Polypli rectal 107
Polythene cellophane in treatment of
aortic aneurysm 331 332
tubing for infusions 333
Polyvinyl pyrrolidone (PVP) as
plasma substitute 11
Popliteal vein division of 335
Porta caval anastomosis 165
Portal hypertension 156
clinical aspects 169
collateral circulation in 158
investigations in 160
pathology 156
surgical treatment 163
results of 169
Portal systemic shunts 165
Portal vein obstruction of 156 157
pressure in 157 158
Portal venography 163
Post cholecystectomy symptoms 129
Post cricoid carcinoma 64
Post gastrectomy syndrome 117
relief of 122
Post prandial syndrome late 122
Postural drainage in bronchiectasis
224 225
Potassium deficiency 8
metabolism 6
Procaine penicillin 21
Prostate benign enlargement 304
retention complicating 311
carcinoma of 311
hormonal treatment in 410

Prostatectomy retropubic 307
suprapubic, with closure 309
transurethral 306
Pulmonary abscess 225
metastases from tumours of tests
387 388
stenosis 262
suppuration 224
tuberculosis 228
See also Lung
Purpura thrombocytopenic
splenectomy in 154
Pyelogram intravenous in portal
hypertension 163
Pyloroplasty with vagotomy for
duodenal ulcer 108
Pyramidal fossa carcinoma of 68 63

Radioactive isotopes 419 et seq
Radioiodine in cancer of thyroid 310
in hyperthyroidism 365
Radiology in cancer of pharynx 65
Radiotherapy advances in 385-409
apparatus advances in 384
in cancer of bone 397
of breast 346-348
of cervical lymphnodes 395
of larynx 395
of lung 242
of pharynx 66
of skin 404
of tests 386
of tongue and mouth 390
of urinary bladder 389
supervoltage 384 389
Recto urinary fistula 194 195
Recto vaginal fistula 194 195
Rectum and anus congenital
deformities of 193
and recto sigmoid cancer of
radical restorative resection in
treatment of 199-202
blind 195
tumours benign epithelial and
malignant polyps 197
Refrigeration and hibernation 48
Relaxant agents in anaesthesia 30-40
Renal sympathectomy 299
Respiratory depression after relaxant
anaesthesia 35 39
Rodent ulcer radiotherapy in 406

Sarcoidosis 154
Sarcoma bone 397
Scoliosis 3
Seminoma of testis 386
Vascular disease obliterative 318
 peripheral 318
 Yam study of 424
Vascular surgery peripheral plaques in 332 333
Vein grafting 323
 in portal systemic anastomosis 167
 in war surgery 324
Veins deep of lower limbs interruption of 334
varicose injection treatment of 338
Vena cava inferior ligation of 335
Venography portal 163
Venous occlusion intermittent for intermittent claudication 327

Venous shunts in portal hypertension 165
Venous system 334
Vinyon cloth artery prosthesis 334
Viscerectomy pelvic 412 See also under Pelvic
Visick's radical measured gastrectomy 102

Water and electrolyte metabolism 1
 intoxication 5
 requirements of body normal and post operative 3 4
Whipple's triad 141